Issue |
A&A
Volume 562, February 2014
|
|
---|---|---|
Article Number | A77 | |
Number of page(s) | 22 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201322646 | |
Published online | 07 February 2014 |
Rotationally-supported disks around Class I sources in Taurus: disk formation constraints ⋆,⋆⋆
1
Leiden Observatory, Leiden University, PO Box 9513
2300 RA
Leiden
The Netherlands
e-mail: harsono@strw.leidenuniv.nl
2
SRON Netherlands Institute for Space Research,
PO Box 800,
9700 AV
Groningen, The
Netherlands
3
Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30,
2100
Copenhagen Ø,
Denmark
4
Centre for Star and Planet Formation, Natural History Museum of
Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350
Copenhagen K,
Denmark
5
Max-Planck-Institut für extraterretrische Physik,
Giessenbachstrasse 1,
85748
Garching,
Germany
Received:
10
September
2013
Accepted:
13
December
2013
Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date.
Aims. We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures.
Methods. Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2–1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient.
Results. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks.
Conclusions. Rotationally supported disks with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase.
Key words: stars: low-mass / techniques: interferometric / stars: protostars / accretion, accretion disks / ISM: molecules / protoplanetary disks
Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNBRS (France), MPG (Germany) and IGN (Spain).
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.