Issue |
A&A
Volume 556, August 2013
|
|
---|---|---|
Article Number | A89 | |
Number of page(s) | 46 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201220849 | |
Published online | 02 August 2013 |
High-J CO survey of low-mass protostars observed with Herschel-HIFI⋆,⋆⋆
1
Leiden Observatory, Leiden University,
PO Box 9513, 2300 RA
Leiden, The
Netherlands
e-mail:
yildiz@strw.leidenuniv.nl
2
Harvard-Smithsonian Center for Astrophysics, 60 Garden
Street, Cambridge,
MA
02138,
USA
3
Max Planck Institut für Extraterrestrische Physik,
Giessenbachstrasse 1,
85748
Garching,
Germany
4
Observatorio Astronómico Nacional (IGN),
Calle Alfonso XII, 3,
28014
Madrid,
Spain
5
Observatorio Astronómico Nacional, Apartado 112, 28803
Alcalá de Henares,
Spain
6
Department of Astronomy, University of Michigan,
500 Church Street, Ann Arbor, MI
48109-1042,
USA
7
Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30,
2100
Copenhagen Ø.,
Denmark
8
Centre for Star and Planet Formation, Natural History Museum of
Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350
Copenhagen K.,
Denmark
Received: 4 December 2012
Accepted: 14 June 2013
Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations.
Aims. The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines.
Methods. Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes.
Results. The 12CO 10–9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2–10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is dispersed. Models of the collapse and evolution of protostellar envelopes reproduce the C18O results well, but underproduce the 13CO and 12CO excitation temperatures, due to lack of UV heating and outflow components in those models. The H2O 110 − 101/CO 10–9 intensity ratio does not change significantly with velocity, in contrast to the H2O/CO 3–2 ratio, indicating that CO 10–9 is the lowest transition for which the line wings probe the same warm shocked gas as H2O. Modeling of the full suite of C18O lines indicates an abundance profile for Class 0 sources that is consistent with a freeze-out zone below 25 K and evaporation at higher temperatures, but with some fraction of the CO transformed into other species in the cold phase. In contrast, the observations for two Class I sources in Ophiuchus are consistent with a constant high CO abundance profile.
Conclusions. The velocity resolved line profiles trace the evolution from the Class 0 to the Class I phase through decreasing line intensities, less prominent outflow wings, and increasing average CO abundances. However, the CO excitation temperature stays nearly constant. The multiple components found here indicate that the analysis of spectrally unresolved data, such as provided by SPIRE and PACS, must be done with caution.
Key words: astrochemistry / stars: formation / stars: protostars / ISM: molecules / techniques: spectroscopic
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Appendices C and D are available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.