Issue |
A&A
Volume 508, Number 3, December IV 2009
|
|
---|---|---|
Page(s) | 1173 - 1191 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200810644 | |
Published online | 27 October 2009 |
Photometric redshifts and cluster tomography in the ESO Distant Cluster Survey *,**
1
Laboratoire d'Astrophysique de Toulouse-Tarbes, CNRS, Université de Toulouse, 14 avenue Édouard Belin, 31400 Toulouse, France e-mail: roser@ast.obs-mip.fr
2
Leo Goldberg Fellow, National Optical Astronomical Observatory, 950 North Cherry Avenue, Tucson, AZ 85721, USA
3
Max-Planck-Institut für Astrophysik, Karl-Schwarschild-Str. 1, Postfach 1317, 85741 Garching, Germany
4
INAF – Astronomical Observatory of Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy
5
Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7, Canada
6
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
7
Observatoire de Genève, Laboratoire d'Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny, Switzerland
8
GEPI, CNRS-UMR8111, Observatoire de Paris, section de Meudon, 5 place Jules Janssen, 92195 Meudon Cedex, France
9
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
10
The Royal Library/Copenhagen University Library, Research Dept., Box 2149, 1016 Copenhagen K, Denmark
11
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, Postfach 1312, 85741 Garching, Germany
12
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
13
Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
14
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
15
Osservatorio Astronomico, vicolo dell'Osservatorio 5, 35122 Padova, Italy
16
SUPA, Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
17
Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA
18
Institut d'Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France
19
Sterrewacht Leiden, PO Box 9513, 2300 RA, Leiden, The Netherlands
20
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
Received:
21
July
2008
Accepted:
16
October
2009
Context. This paper reports the results obtained on the photometric redshifts measurement and accuracy, and cluster tomography in the ESO Distant Cluster Survey (EDisCS) fields.
Aims. We present the methods used to determine photometric redshifts to discriminate between member and non-member galaxies and reduce the contamination by faint stars in subsequent spectroscopic studies.
Methods. Photometric redshifts were computed using two independent codes both
based on standard spectral energy distribution (SED) fitting methods
( and Rudnick's code). Simulations were used to
determine the redshift regions for which a reliable determination of
photometric redshifts was expected. The accuracy of the photometric
redshifts was assessed by comparing our estimates with the
spectroscopic redshifts of ∼1400 galaxies
in the
domain.
The accuracy
expected for galaxies fainter than the spectroscopic control sample
was estimated using a degraded version of the photometric catalog
for the spectroscopic sample.
Results. The accuracy of photometric redshifts is typically , depending on the field, the filter set,
and the spectral type of the galaxies.
The quality of the photometric redshifts degrades by a factor of two
in
between the brightest (
)
and the faintest (
–24.5) galaxies in the EDisCS sample.
The photometric determination of cluster redshifts in the EDisCS
fields using a simple algorithm based on zphot is in excellent
agreement with the spectroscopic values, such that
0.03–0.04 in the high-z sample and
in the
low-z sample, i.e. the zphot cluster redshifts are at least a
factor ~
more accurate than the measurements of zphot for
individual galaxies.
We also developed a method that uses both photometric redshift codes
jointly to reject interlopers at magnitudes fainter than the
spectroscopic limit.
When applied to the spectroscopic sample, this method
rejects ∼
of all
spectroscopically confirmed non-members, while retaining ≳
of all confirmed members.
Conclusions. Photometric redshifts are found to be particularly useful for the identification and study of clusters of galaxies in large surveys. They enable efficient and complete pre-selection of cluster members for spectroscopy, allow accurate determinations of the cluster redshifts based on photometry alone, and provide a means of determining cluster membership, especially for bright sources.
Key words: galaxies: clusters: general / galaxies: distances and redshifts / galaxies: photometry / galaxies: evolution
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.