Open Access
Issue
A&A
Volume 699, July 2025
Article Number A303
Number of page(s) 15
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202553866
Published online 17 July 2025
  1. Angora, G., Rosati, P., Meneghetti, M., et al. 2023, A&A, 676, A40 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  2. Antonucci, R. 1993, ARA&A, 31, 473 [Google Scholar]
  3. Baron, D. 2019, arXiv e-prints [arXiv:1904.07248] [Google Scholar]
  4. Bauer, H.-U., Herrmann, M., & Villmann, T. 1999, Neural Netw., 12, 659 [Google Scholar]
  5. Botticella, M. T., Cappellaro, E., Pignata, G., et al. 2013, TM, 151, 29 [Google Scholar]
  6. Botticella, M. T., Cappellaro, E., Greggio, L., et al. 2017, A&A, 598, A50 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Brandt, W. N., Ni, Q., Yang, G., et al. 2018, arXiv e-prints [arXiv:1811.06542] [Google Scholar]
  8. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  9. Capaccioli, M., & Schipani, P. 2011, TM, 146, 2 [Google Scholar]
  10. Cappellaro, E., Botticella, M. T., Pignata, G., et al. 2015, A&A, 584, A62 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Cavuoti, S., Amaro, V., Brescia, M., et al. 2017, MNRAS, 465, 1959 [Google Scholar]
  12. Cavuoti, S., De Cicco, D., Doorenbos, L., et al. 2024, A&A, 687, A246 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Davidzon, I., Jegatheesan, K., Ilbert, O., et al. 2022, A&A, 665, A34 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. De Cicco, D., Paolillo, M., Covone, G., et al. 2015, A&A, 574, A112 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. De Cicco, D., Paolillo, M., Falocco, S., et al. 2019, A&A, 627, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. De Cicco, D., Bauer, F. E., Paolillo, M., et al. 2021, A&A, 645, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. De Cicco, D., Bauer, F. E., Paolillo, M., et al. 2022, A&A, 664, A117 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. De Cicco, D., Zazzaro, G., Cavuoti, S., et al. 2025, A&A, 697, A204 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Djorgovski, S., Graham, M., Donalek, C., et al. 2016, Future Gener. Comput. Syst., 59, 95 [Google Scholar]
  20. Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142 [Google Scholar]
  21. Doorenbos, L., Torbaniuk, O., Cavuoti, S., et al. 2022, A&A, 666, A171 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. D’Isanto, A., Cavuoti, S., Gieseke, F., & Polsterer, K. L. 2018, A&A, 616, A97 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Eyheramendy, S., Elorrieta, F., & Palma, W. 2018, MNRAS, 481, 4311 [Google Scholar]
  24. Fotopoulou, S. 2024, Astron. Comput., 100851 [Google Scholar]
  25. Grado, A., Capaccioli, M., Limatola, L., & Getman, F. 2012, MemSAIt, 19, 362 [Google Scholar]
  26. Graham, M. J., Djorgovski, S. G., Drake, A. J., et al. 2017, MNRAS, 470, 4112 [NASA ADS] [CrossRef] [Google Scholar]
  27. Gupta, N., Huynh, M., Norris, R. P., et al. 2022, PASA, 39, e051 [Google Scholar]
  28. Hemmati, S., Capak, P., Pourrahmani, M., et al. 2019, ApJ, 881, L14 [NASA ADS] [CrossRef] [Google Scholar]
  29. Holwerda, B. W., Smith, D., Porter, L., et al. 2022, MNRAS, 513, 1972 [Google Scholar]
  30. Huijse, P., Estévez, P. A., Förster, F., et al. 2018, ApJS, 236, 12 [NASA ADS] [CrossRef] [Google Scholar]
  31. Ivezić, Z., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  32. Jaiswal, A., & Kumar, R. 2023, Multimed. Tools Appl., 82, 18059 [Google Scholar]
  33. Kim, D.-W., Protopapas, P., Byun, Y.-I., et al. 2011, ApJ, 735, 68 [NASA ADS] [CrossRef] [Google Scholar]
  34. Kim, D.-W., Protopapas, P., Bailer-Jones, C. A. L., et al. 2014, A&A, 566, A43 [CrossRef] [EDP Sciences] [Google Scholar]
  35. Kiviluoto, K. 1996, in Proceedings of International Conference on Neural Networks (ICNN’96), 1, IEEE, 294 [Google Scholar]
  36. Koekemoer, A. M., Aussel, H., Calzetti, D., et al. 2007, ApJS, 172, 196 [Google Scholar]
  37. Kohonen, T. 2001, Self-organizing Maps, 3rd edn., Springer Series in Information Sciences, 30 (Berlin: Springer) [Google Scholar]
  38. Kohonen, T. 2013, Neural Netw., 37, 52 [Google Scholar]
  39. Kohonen, T., Nieminen, I. T., & Honkela, T. 2009, in Advances in SelfOrganizing Maps: 7th International Workshop, WSOM 2009, St. Augustine, FL, USA, June 8-10, 2009. Proceedings 7 (Springer), 133 [Google Scholar]
  40. Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, 224, 24 [Google Scholar]
  41. Licen, S., Astel, A., & Tsakovski, S. 2023, STOTEN, 878, 163084 [Google Scholar]
  42. LSST Science Collaboration (Abell, P. A., et al.) 2009, ArXiv e-prints [arXiv:0912.0201] [Google Scholar]
  43. MacLeod, C. L., Ross, N. P., Lawrence, A., et al. 2016, MNRAS, 457, 389 [Google Scholar]
  44. Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 1 [Google Scholar]
  45. Marchesi, S., Civano, F., Elvis, M., et al. 2016, ApJ, 817, 34 [Google Scholar]
  46. Maruccia, Y., Cavuoti, S., Crupi, R., et al. 2025, Financ. Innov., submitted [Google Scholar]
  47. Masters, D., Capak, P., Stern, D., et al. 2015, ApJ, 813, 53 [Google Scholar]
  48. McLaughlin, M. A., Mattox, J. R., Cordes, J. M., & Thompson, D. J. 1996, ApJ, 473, 763 [Google Scholar]
  49. Nandra, K., George, I., Mushotzky, R., Turner, T., & Yaqoob, T. 1997, ApJ, 476, 70 [CrossRef] [Google Scholar]
  50. Netzer, H. 2015, ARA&A, 53, 365 [Google Scholar]
  51. Nun, I., Protopapas, P., Sim, B., et al. 2015, arXiv e-prints [arXiv:1506.00010] [Google Scholar]
  52. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, JMLR, 12, 2825 [Google Scholar]
  53. Pei, D., Luo, C., & Liu, X. 2023, Appl. Soft Comput., 134, 109972 [Google Scholar]
  54. Raiteri, C. M., Carnerero, M. I., Balmaverde, B., et al. 2022, ApJS, 258, 3 [NASA ADS] [CrossRef] [Google Scholar]
  55. Ricci, C., & Trakhtenbrot, B. 2023, Nat. Astron., 7, 1282 [Google Scholar]
  56. Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, ApJ, 733, 10 [NASA ADS] [CrossRef] [Google Scholar]
  57. Sánchez-Sáez, P., Reyes, I., Valenzuela, C., et al. 2021, AJ, 161, 141 [CrossRef] [Google Scholar]
  58. Schmidt, K. B., Marshall, P. J., Rix, H.-W., et al. 2010, ApJ, 714, 1194 [NASA ADS] [CrossRef] [Google Scholar]
  59. Scolnic, D. M., Lochner, M., Gris, P., et al. 2018, arXiv e-prints, [arXiv:1812.00516] [Google Scholar]
  60. Scoville, N., Abraham, R. G., Aussel, H., et al. 2007a, ApJS, 172, 38 [Google Scholar]
  61. Scoville, N., Aussel, H., Brusa, M., et al. 2007b, ApJS, 172, 1 [Google Scholar]
  62. Solazzo, G., Maruccia, Y., Ndou, V., & Del Vecchio, P. 2022, Serv. Bus., 16, 417 [Google Scholar]
  63. Song, X.-H., & Hopke, P. K. 1996, Anal. Chim. Acta., 334, 57 [Google Scholar]
  64. Soo, J. Y. H., Shuaili, I. Y. K. A., & Pathi, I. M. 2023, in First International Conference on Computational Science & Data Analytics: Incorporating the 1st South-East Asia Workshop on Computational Physics and Data Analytics (CPDAS 2021), 2756 (AIP Publishing), 040001 [Google Scholar]
  65. Stutz, D. 2022, Collection of LaTeX resources and examples, https://github.com/davidstutz/latex-resources, accessed on 01.01.2024 [Google Scholar]
  66. Tangaro, S., Amoroso, N., Brescia, M., et al. 2015, CMMM, 2015, https://doi.org/10.1155/2015/814104 [Google Scholar]
  67. Taylor, M. B. 2005, in Astronomical Society of the Pacific Conference Series, 347, Astronomical Data Analysis Software and Systems XIV, eds. P. Shopbell, M. Britton, & R. Ebert, 29 [Google Scholar]
  68. Taylor, M. B. 2006, in Astronomical Society of the Pacific Conference Series, 351, Astronomical Data Analysis Software and Systems XV, eds. C. Gabriel, C. Arviset, D. Ponz, & S. Enrique, 666 [Google Scholar]
  69. Teimoorinia, H., Archinuk, F., Woo, J., Shishehchi, S., & Bluck, A. F. 2022, AJ, 163, 71 [Google Scholar]
  70. Uriarte, E. A., & Martín, F. D. 2005, AMCS, 1, 19 [Google Scholar]
  71. Urry, C. M., & Padovani, P. 1995, PASP, 107, 803 [NASA ADS] [CrossRef] [Google Scholar]
  72. Vettigli, G. 2018, https://github.com/JustGlowing/minisom/ [Google Scholar]
  73. Zin, Z. M. 2014, in 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, 163 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.