Issue |
A&A
Volume 422, Number 3, August II 2004
|
|
---|---|---|
Page(s) | 1113 - 1121 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20040141 | |
Published online | 16 July 2004 |
Automated clustering algorithms for classification of astronomical objects
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China e-mail: zyx@lamost.bao.ac.cn;yzhao@lamost.bao.ac.cn
Received:
6
May
2003
Accepted:
4
March
2004
Data mining is an important and challenging problem for the efficient analysis of large astronomical databases and will become even more important with the development of the Global Virtual Observatory. In this study, learning vector quantization (LVQ), single-layer perceptron (SLP) and support vector machines (SVM) were used for multi-wavelength data classification. A feature selection technique was used to evaluate the significance of the considered features for the results of classification. We conclude that in the situation of fewer features, LVQ and SLP show better performance. In contrast, SVM shows better performance when considering more features. The focus of the automatic classification is on the development of an efficient feature-based classifier. The classifiers trained by these methods can be used to preselect AGN candidates.
Key words: methods: data analysis / methods: statistical / astronomical data bases: miscellaneous / catalogs
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.