Free Access
Issue
A&A
Volume 422, Number 3, August II 2004
Page(s) 1113 - 1121
Section Astronomical instrumentation
DOI https://doi.org/10.1051/0004-6361:20040141
Published online 16 July 2004
  1. Allende Prieto, C., Rebolo, R., Lopez, R. J. G., et al. 2000, AJ, 120, 1516 [NASA ADS] [CrossRef] [Google Scholar]
  2. Andreon, S., Gargiulo, G., Longo, G., et al. 2000, MNRAS, 319, 700 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bailer-Jones, C. A. L., Irwin, M., & von Hippel, T. 1998, MNRAS, 298, 361 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bazell, D., & Peng, Y. 1998, ApJS, 116, 47 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bertin, E., & Arnout, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Bishop, C. M. 1995, Neural Networks for Pattern Recognition (Oxford University Press) [Google Scholar]
  7. Böhringer, H. 1996, in X-ray Studies of Clusters of Galaxies, Proc. Röntgenstrahlung from the Universe, Garching, ed. H. U. Zimmermann, J. E. Trümper, & H. Yorke, MPE Rep., 263, 537 [Google Scholar]
  8. Burges, C. J. C. 1998, Data Mining and Knowledge Discovery, 2, 121 [Google Scholar]
  9. Cortiglioni, F., Mähönen, P., Hakala, P., et al. 2001, ApJ, 556, 937 [NASA ADS] [CrossRef] [Google Scholar]
  10. de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., et al. 1991, Third Reference Catalogue of Bright Galaxies (RC3) (New York: Springer-Verlag) [Google Scholar]
  11. Folkes, S. R., Lahav, O., & Maddox, S. J. 1996, MNRAS, 283, 651 [NASA ADS] [Google Scholar]
  12. Goderya, S. N., & McGuire, P. C. 2000, 197th A&AS Meeting, 32, 1526 [Google Scholar]
  13. Gunn, S. R. 1998, Support Vector Machines for Classification and Regression, ISIS Technical Report ISIS-1-98, Image Speech & Intelligent Systems Research Group, University of Southapton [Google Scholar]
  14. He, X.-T., Wu, J.-H, Yuan, Q.-R., et al. 2001, AJ, 121, 1863 [NASA ADS] [CrossRef] [Google Scholar]
  15. Humphreys, R. M., Karypis, G., Hasan, M., et al. 2001, A&AS, 199, 10, 15 [Google Scholar]
  16. Kohonen, T. 1989, Self-Organization and Associative Memory, 3rd ed. (Berlin: Springer) [Google Scholar]
  17. Kohonen, T. 1990, Proc. IEEE, 78, 1464 [Google Scholar]
  18. Kohonen, T. 1995, Self-Organization Maps (Berlin: Springer) [Google Scholar]
  19. Kohonen, T., Hynninen, J., Kangas, J., et al. 1995, Learning Vector Quantization Program Package, Version 3.1 [Google Scholar]
  20. Krautter, J., Zickgraf, F.-J., Appenzeller, I., et al. 1999, 350, 743 [Google Scholar]
  21. Lahav, O., Naim, A., Sodre, L. Jr., et al. 1996, MNRAS, 383, 207 [NASA ADS] [CrossRef] [Google Scholar]
  22. Mattox, J. R., Schachter, J., Molnar, L., et al. 1997, ApJ, 481, 95 [NASA ADS] [CrossRef] [Google Scholar]
  23. Mähönen, P. H., & Hakala, P. J. 1995, ApJ, 452, L77 [NASA ADS] [CrossRef] [Google Scholar]
  24. Miller, A. S., & Coe, M. J. 1996, MNRAS, 279, 293 [NASA ADS] [CrossRef] [Google Scholar]
  25. Monet, D. B. A., Canzian, B., Dahn, C., et al. 1998, VizieR On-line Data Catalog: I/252 [Google Scholar]
  26. Naim, A., Lahav, O., Sodre, L. Jr., et al. 1995, MNRAS, 275, 567 [NASA ADS] [CrossRef] [Google Scholar]
  27. Odewahn, S. C., Stockwell, E. B., Pennington, R. L., et al. 1992, AJ, 103, 318 [NASA ADS] [CrossRef] [Google Scholar]
  28. Pietsch, W., Bischoff, K., Boller, Th., et al. 1998, A&A, 333, 48 [NASA ADS] [Google Scholar]
  29. Qu, Ming, Shih, Frank Y., Jing, Ju, & Wang, Haimin 2003, Sol. Phys., 217, 157 [NASA ADS] [CrossRef] [Google Scholar]
  30. Motch, C., Guillout, P., Haberl, F., et al. 1998, A&AS, 132, 341 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Rutledge, R. E., Brunner, R. J., & Prince, T. A. 2000, ApJS, 131, 335 [NASA ADS] [CrossRef] [Google Scholar]
  32. Stitson, M. O., Weston, J. A. E., Gammerman, A., et al. 1996, Theory of Support Vector Machines, Technical Report CSD-TR-96-17, Department of Computer Science, Royal Holloway College, University of London [Google Scholar]
  33. Storrie-Lombardi, M. C., Lahav, O., Sodre, L. Jr., et al. 1992, MNRAS, 259, 8 [Google Scholar]
  34. Stocke, J. T., Morris, S. L., Gioia, I. M., et al. 1991, ApJS, 76, 813 [NASA ADS] [CrossRef] [Google Scholar]
  35. Szalay, A., & Gray, J. 2001, Science, 293, 2037 [NASA ADS] [CrossRef] [Google Scholar]
  36. Vapnik, V. N. 1995, The Nature of Statistical Learning Theory (New York: Springer) [Google Scholar]
  37. Trümper, J. 1983, Adv. Space Res., 2, 241 [Google Scholar]
  38. Véron-Cetty, M. P., & Véron, P. 1998, ESO Scientific Report, 18 [Google Scholar]
  39. Véron-Cetty, M. P., & Véron, P. 2000, ESO Scientific Report, 19 [Google Scholar]
  40. Voges, W., Aschenbach, B., Boller, Th., et al. 1999, A&A, 349, 389 [NASA ADS] [Google Scholar]
  41. Weaver, W. B. 2000, ApJ, 541, 298 [NASA ADS] [CrossRef] [Google Scholar]
  42. Weston, J., & Watkins, C. 1998, Multi-class Support Vector Machines, Technical Report CSD-TR-98-04 [Google Scholar]
  43. Wozniak, P. R., Akerlof, C., Amrose, S., et al. 2001, A&AS, 199, 130, 04 [Google Scholar]
  44. Zhang, Y., & Zhao, Y. 2003, PASP, 115, 1006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.