Open Access
Issue |
A&A
Volume 696, April 2025
|
|
---|---|---|
Article Number | A130 | |
Number of page(s) | 11 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202453042 | |
Published online | 15 April 2025 |
- Annibali, F., & Tosi, M. 2022, Nat. Astron., 6, 48 [NASA ADS] [CrossRef] [Google Scholar]
- Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJ, 647, L111 [NASA ADS] [CrossRef] [Google Scholar]
- Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2007, ApJ, 654, 897 [Google Scholar]
- Belokurov, V., Walker, M. G., Evans, N. W., et al. 2008, ApJ, 686, L83 [NASA ADS] [CrossRef] [Google Scholar]
- Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bullock, J. S. 2010, ArXiv e-prints [arXiv:1009.4505] [Google Scholar]
- Bullock, J. S., & Boylan-Kolchin, M. 2017, ARA&A, 55, 343 [Google Scholar]
- Byun, W., Sheen, Y.-K., Park, H. S., et al. 2020, ApJ, 891, 18 [NASA ADS] [CrossRef] [Google Scholar]
- Cai, J., Yan, Z., Yang, H., et al. 2024, A&A, 687, A15 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cao, Z., Yi, Z., Pan, J., et al. 2023, AJ, 165, 184 [Google Scholar]
- Cerny, W., Pace, A. B., Drlica-Wagner, A., et al. 2021, ApJ, 920, L44 [NASA ADS] [CrossRef] [Google Scholar]
- Choque-Challapa, N., Aguerri, J. A. L., Mancera Piña, P. E., et al. 2021, MNRAS, 507, 6045 [NASA ADS] [CrossRef] [Google Scholar]
- Collins, M. L. M., Charles, E. J. E., Martínez-Delgado, D., et al. 2022, MNRAS, 515, L72 [NASA ADS] [CrossRef] [Google Scholar]
- Crosby, E., Jerjen, H., Müller, O., et al. 2024, MNRAS, 527, 9118 [Google Scholar]
- Davies, J. I., Davies, L. J. M., & Keenan, O. C. 2016, MNRAS, 456, 1607 [Google Scholar]
- Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168 [Google Scholar]
- Homma, D., Chiba, M., Komiyama, Y., et al. 2024, PASJ, 76, 733 [NASA ADS] [CrossRef] [Google Scholar]
- Hou, Q., Zhou, D., & Feng, J. 2021, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13708 [CrossRef] [Google Scholar]
- Karachentsev, I. D., Makarov, D. I., & Kaisina, E. I. 2013, AJ, 145, 101 [Google Scholar]
- Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82 [Google Scholar]
- Koribalski, B. S., Wang, J., Kamphuis, P., et al. 2018, MNRAS, 478, 1611 [NASA ADS] [CrossRef] [Google Scholar]
- Kumar, T., Brennan, R., Mileo, A., & Bendechache, M. 2024, IEEE Access, 12, 187536 [Google Scholar]
- La Marca, A., Peletier, R., Iodice, E., et al. 2022, A&A, 659, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [Google Scholar]
- Li, C., Zhang, Y., Cui, C., et al. 2023, MNRAS, 518, 513 [Google Scholar]
- Li, Q., Ma, W., Li, H., et al. 2024, Comp. Electron. Agri., 219, 108752 [Google Scholar]
- Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. 2018, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8759 [CrossRef] [Google Scholar]
- Liu, S., Wang, Y., Yu, Q., Liu, H., & Peng, Z. 2022, IEEE Access, 10, 129116 [CrossRef] [Google Scholar]
- Madden, S. C. & Cormier, D. 2019, IAU Symp., 344, 240 [Google Scholar]
- Martin, N. F., McConnachie, A. W., Irwin, M., et al. 2009, ApJ, 705, 758 [NASA ADS] [CrossRef] [Google Scholar]
- Martínez-Delgado, D., Makarov, D., Javanmardi, B., et al. 2021, A&A, 652, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Martínez-Delgado, D., Karim, N., Charles, E. J. E., et al. 2022, MNRAS, 509, 16 [Google Scholar]
- Mau, S., Cerny, W., Pace, A. B., et al. 2020, ApJ, 890, 136 [NASA ADS] [CrossRef] [Google Scholar]
- McConnachie, A. W., Huxor, A., Martin, N. F., et al. 2008, ApJ, 688, 1009 [NASA ADS] [CrossRef] [Google Scholar]
- Müller, O., Jerjen, H., & Binggeli, B. 2015, A&A, 583, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Müller, O., Rejkuba, M., Pawlowski, M. S., et al. 2019, A&A, 629, A18 [Google Scholar]
- Mutlu-Pakdil, B., Sand, D. J., Crnojević, D., et al. 2022, ApJ, 926, 77 [NASA ADS] [CrossRef] [Google Scholar]
- Park, H. S., Moon, D.-S., Zaritsky, D., et al. 2017, ApJ, 848, 19 [NASA ADS] [CrossRef] [Google Scholar]
- Perivolaropoulos, L., & Skara, F. 2022, New A Rev., 95, 101659 [NASA ADS] [CrossRef] [Google Scholar]
- Poulain, M., Marleau, F. R., Habas, R., et al. 2021, MNRAS, 506, 5494 [NASA ADS] [CrossRef] [Google Scholar]
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Los Alamitos, CA, USA: IEEE Computer Society), 779 [CrossRef] [Google Scholar]
- Reefe, M., Satyapal, S., Sexton, R. O., et al. 2023, ApJ, 946, L38 [NASA ADS] [CrossRef] [Google Scholar]
- Saremi, E., Javadi, A., van Loon, J. T., et al. 2020, ApJ, 894, 135 [Google Scholar]
- Shi, J.-H., Qiu, B., Luo, A. L., et al. 2022, MNRAS, 516, 264 [Google Scholar]
- Shorten, C., & Khoshgoftaar, T. 2019, J. Big Data, 6, 60 [CrossRef] [Google Scholar]
- Sunkara, R., & Luo, T. 2023, in Machine Learning and Knowledge Discovery in Databases, eds. M.-R. Amini, S. Canu, A. Fischer, (Cham: Springer Nature Switzerland), 443 [Google Scholar]
- Teeninga, P., Moschini, U., Trager, S. C., & Wilkinson, M. H. F. 2015, in Mathematical Morphology and Its Applications to Signal and Image Processing, eds. J. A. Benediktsson, J. Chanussot, L. Najman, & H. Talbot (Cham: Springer International Publishing), 157 [Google Scholar]
- Tolstoy, E. 2003, Ap&SS, 284, 579 [Google Scholar]
- Torrealba, G., Koposov, S. E., Belokurov, V., & Irwin, M. 2016, MNRAS, 459, 2370 [NASA ADS] [CrossRef] [Google Scholar]
- Torrealba, G., Belokurov, V., Koposov, S. E., et al. 2018, MNRAS, 475, 5085 [NASA ADS] [CrossRef] [Google Scholar]
- Torrealba, G., Belokurov, V., Koposov, S. E., et al. 2019, MNRAS, 488, 2743 [NASA ADS] [CrossRef] [Google Scholar]
- Venhola, A., Peletier, R., Laurikainen, E., et al. 2018, A&A, 620, A165 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Venhola, A., Peletier, R. F., Salo, H., et al. 2022, A&A, 662, A43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. 2023, in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7464 [CrossRef] [Google Scholar]
- Willman, B., Blanton, M. R., West, A. A., et al. 2005a, AJ, 129, 2692 [NASA ADS] [CrossRef] [Google Scholar]
- Willman, B., Dalcanton, J. J., Martinez-Delgado, D., et al. 2005b, ApJ, 626, L85 [Google Scholar]
- Yang, H., Shi, C., Cai, J., et al. 2022, MNRAS, 517, 5496 [NASA ADS] [CrossRef] [Google Scholar]
- Yang, H., Zhou, L., Cai, J., et al. 2023a, MNRAS, 518, 5904 [Google Scholar]
- Yang, H.-F., Yin, X.-N., Cai, J.-H., et al. 2023b, Res. Astron. Astrophys., 23, 055006 [CrossRef] [Google Scholar]
- Yang, H.-F., Wang, R., Cai, J.-H., et al. 2024, ApJS, 272, 43 [NASA ADS] [CrossRef] [Google Scholar]
- Yasir, M., Shanwei, L., Mingming, X., et al. 2024, Appl. Soft Comp., 160, 111704 [Google Scholar]
- Yi, Z., Li, J., Du, W., et al. 2022, MNRAS, 513, 3972 [NASA ADS] [CrossRef] [Google Scholar]
- Zhou, R., Ferraro, S., White, M., et al. 2023, J. Cosmology Astropart. Phys., 2023, 097 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.