Open Access
Issue |
A&A
Volume 675, July 2023
|
|
---|---|---|
Article Number | A125 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202245126 | |
Published online | 11 July 2023 |
- Adam, A., Perreault-Levasseur, L., & Hezaveh, Y. 2022, ArXiv e-prints [arXiv:2207.01073] [Google Scholar]
- Alexander, S., Gleyzer, S., McDonough, E., Toomey, M. W., & Usai, E. 2020a, ApJ, 893, 15 [NASA ADS] [CrossRef] [Google Scholar]
- Alexander, S., Gleyzer, S., Parul, H., et al. 2020b, ArXiv e-prints [arXiv:2008.12731] [Google Scholar]
- Babuschkin, I., Baumli, K., Bell, A., et al. 2020, http://github.com/deepmind [Google Scholar]
- Barnes, J. E., & Hernquist, L. 1996, ApJ, 471, 115 [NASA ADS] [CrossRef] [Google Scholar]
- Bayer, D., Chatterjee, S., Koopmans, L. V. E., et al. 2018, ArXiv e-prints [arXiv:1803.05952] [Google Scholar]
- Biggio, L., Galan, A., Peel, A., Vernardos, G., & Courbin, F. 2021, in Machine Learning and the Physical Sciences, NeurIPS 2021 Workshop [Google Scholar]
- Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40 [NASA ADS] [CrossRef] [Google Scholar]
- Bradbury, J., Frostig, R., Hawkins, P., et al. 2018, JAX: composable transformations of Python+NumPy programs [Google Scholar]
- Brehmer, J., Mishra-Sharma, S., Hermans, J., Louppe, G., & Cranmer, K. 2019, ApJ, 886, 49 [NASA ADS] [CrossRef] [Google Scholar]
- Chatterjee, S. 2019, PhD thesis, University of Groningen, The Netherlands [Google Scholar]
- Chatterjee, S., & Koopmans, L. V. E. 2018, MNRAS, 474, 1762 [NASA ADS] [CrossRef] [Google Scholar]
- Chianese, M., Coogan, A., Hofma, P., Otten, S., & Weniger, C. 2020, MNRAS, 496, 381 [Google Scholar]
- Coogan, A., Karchev, K., & Weniger, C. 2020, ArXiv e-prints [arXiv:2010.07032] [Google Scholar]
- Coros, S., Macklin, M., Thomaszewski, B., & Thürey, N. 2021, in SIGGRAPH Asia 2021 Courses, SA ‘21 (New York, NY, USA: Association for Computing Machinery) [Google Scholar]
- Cuomo, S., di Cola, V. S., Giampaolo, F., et al. 2022, Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What’s Next (Berlin: Springer) [Google Scholar]
- Cybenko, G. 1989, Math. Control Signals Syst., 2, 303 [Google Scholar]
- de Blok, W. J. G. 2010, Adv. Astron., 2010, 789293 [CrossRef] [Google Scholar]
- Diaz Rivero, A., & Dvorkin, C. 2020, Phys. Rev. D, 101, 023515 [NASA ADS] [CrossRef] [Google Scholar]
- Doerr, S., Majewski, M., Pérez, A., et al. 2021, J. Chem. Theor. Comput., 17, 2355 [CrossRef] [Google Scholar]
- Dubinski, J. 1994, ApJ, 431, 617 [NASA ADS] [CrossRef] [Google Scholar]
- Fluri, J., Kacprzak, T., Lucchi, A., et al. 2019, Phys. Rev. D, 100, 063514 [Google Scholar]
- Galan, A., Peel, A., Joseph, R., Courbin, F., & Starck, J. L. 2021, A&A, 647, A176 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Galan, A., Vernardos, G., Peel, A., Courbin, F., & Starck, J.-L. 2022, A&A, 668, A155 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gennaro, M. 2018, in WFC3 Data Handbook (Baltimore: STScI), 4, 4 [NASA ADS] [Google Scholar]
- Gu, A., Huang, X., Sheu, W., et al. 2022, ApJ, 935, 49 [NASA ADS] [CrossRef] [Google Scholar]
- Heek, J., Levskaya, A., Oliver, A., et al. 2020, Flax: A neural network library and ecosystem for JAX [Google Scholar]
- Hermann, J., Schätzle, Z., & Noé, F. 2020, Nat. Chem., 12, 891 [NASA ADS] [CrossRef] [Google Scholar]
- Hezaveh, Y. D., Dalal, N., Marrone, D. P., et al. 2016, ApJ, 823, 37 [Google Scholar]
- Hezaveh, Y. D., Perreault Levasseur, L., & Marshall, P. J. 2017, Nature, 548, 555 [Google Scholar]
- Hsueh, J.-W., Despali, G., Vegetti, S., et al. 2018, MNRAS, 475, 2438 [NASA ADS] [CrossRef] [Google Scholar]
- Karchev, K., Coogan, A., & Weniger, C. 2022, MNRAS, 512, 661 [NASA ADS] [CrossRef] [Google Scholar]
- Kingma, D. P., & Ba, J. 2014, arXiv e-print [arXiv:1412.6980] [Google Scholar]
- Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82 [Google Scholar]
- Koopmans, L. V. E. 2005, MNRAS, 363, 1136 [NASA ADS] [CrossRef] [Google Scholar]
- Levasseur, L. P., Hezaveh, Y. D., & Wechsler, R. H. 2017, ApJ, 850, L7 [NASA ADS] [CrossRef] [Google Scholar]
- Mildenhall, B., Srinivasan, P. P., Tancik, M., et al. 2020, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [Google Scholar]
- Mishra-Sharma, S., & Yang, G. 2022, arXiv e-prints [arXiv:2206.14820] [Google Scholar]
- Moore, B. 1994, Nature, 370, 629 [NASA ADS] [CrossRef] [Google Scholar]
- Moore, B., Ghigna, S., Governato, F., et al. 1999, ApJ, 524, L19 [Google Scholar]
- Oldham, L. J., & Auger, M. W. 2018, MNRAS, 476, 133 [Google Scholar]
- Ostdiek, B., Diaz Rivero, A., & Dvorkin, C. 2022, A&A, 657, L14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Papastergis, E., Giovanelli, R., Haynes, M. P., & Shankar, F. 2015, A&A, 574, A113 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pearson, J., Li, N., & Dye, S. 2019, MNRAS, 488, 991 [Google Scholar]
- Perreault Levasseur, L., Hezaveh, Y. D., & Wechsler, R. H. 2017, ApJ, 850, L7 [Google Scholar]
- Rahaman, N., Baratin, A., Arpit, D., et al. 2018, arXiv e-print [arXiv:1806.08734] [Google Scholar]
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. 2019, J. Comput. Phys., 378, 686 [NASA ADS] [CrossRef] [Google Scholar]
- Ramachandran, P., Zoph, B., & Le, Q. V. 2017, arXiv preprint [arXiv:1710.05941] [Google Scholar]
- Scannapieco, C., Tissera, P. B., White, S. D. M., & Springel, V. 2008, MNRAS, 389, 1137 [CrossRef] [Google Scholar]
- Schuldt, S., Suyu, S. H., Meinhardt, T., et al. 2021, A&A, 646, A126 [EDP Sciences] [Google Scholar]
- Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6, 41 [Google Scholar]
- Shajib, A. J., Treu, T., Birrer, S., & Sonnenfeld, A. 2021, MNRAS, 503, 2380 [Google Scholar]
- Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., & Wetzstein, G. 2020, arXiv e-print [arXiv:2006.09661] [Google Scholar]
- Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137 [NASA ADS] [CrossRef] [Google Scholar]
- Tancik, M., Srinivasan, P. P., Mildenhall, B., et al. 2020, arXiv preprint [arXiv:2006.10739] [Google Scholar]
- Thuerey, N., Holl, P., Mueller, M., et al. 2021, arXiv preprint [arXiv:2109.05237] [Google Scholar]
- Toomre, A., & Toomre, J. 1972, ApJ, 178, 623 [Google Scholar]
- Van de Vyvere, L., Gomer, M. R., Sluse, D., et al. 2022, A&A, 659, A127 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Varma, S., Fairbairn, M., & Figueroa, J. 2020, arXiv e-prints, [arXiv:2005.05353] [Google Scholar]
- Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T., & Gavazzi, R. 2010, MNRAS, 408, 1969 [Google Scholar]
- Vernardos, G. 2022, MNRAS, 511, 4417 [NASA ADS] [CrossRef] [Google Scholar]
- Vernardos, G., & Koopmans, L. V. E. 2022, MNRAS, 516, 1347 [CrossRef] [Google Scholar]
- Vernardos, G., Tsagkatakis, G., & Pantazis, Y. 2020, MNRAS, 499, 5641 [NASA ADS] [CrossRef] [Google Scholar]
- Wagner-Carena, S., Park, J. W., Birrer, S., et al. 2021, ApJ, 909, 187 [Google Scholar]
- Wagner-Carena, S., Aalbers, J., Birrer, S., et al. 2023, ApJ, 942, 75 [NASA ADS] [CrossRef] [Google Scholar]
- Yao-Yu Lin, J., Yu, H., Morningstar, W., Peng, J., & Holder, G. 2020, arXiv e-prints [arXiv:2010.12960] [Google Scholar]
- Zubovas, K., & King, A. 2012, ApJ, 745, L34 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.