Issue |
A&A
Volume 657, January 2022
|
|
---|---|---|
Article Number | L14 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202142030 | |
Published online | 21 January 2022 |
Letter to the Editor
Image segmentation for analyzing galaxy-galaxy strong lensing systems⋆
Department of Physics, Harvard University, Cambridge, MA 02138, USA
e-mail: bostdiek@g.harvard.edu
Received:
16
August
2021
Accepted:
30
December
2021
Aims. The goal of this Letter is to develop a machine learning model to analyze the main gravitational lens and detect dark substructure (subhalos) within simulated images of strongly lensed galaxies.
Methods. Using the technique of image segmentation, we turn the task of identifying subhalos into a classification problem, where we label each pixel in an image as coming from the main lens, a subhalo within a binned mass range, or neither. Our network is only trained on images with a single smooth lens and either zero or one subhalo near the Einstein ring.
Results. On an independent test set with lenses with large ellipticities, quadrupole and octopole moments, and for source apparent magnitudes between 17−25, the area of the main lens is recovered accurately. On average, only 1.3% of the true area is missed and 1.2% of the true area is added to another part of the lens. In addition, subhalos as light as 108.5 M⊙ can be detected if they lie in bright pixels along the Einstein ring. Furthermore, the model is able to generalize to new contexts it has not been trained on, such as locating multiple subhalos with varying masses or more than one large smooth lens.
Key words: gravitational lensing: strong / dark matter / methods: data analysis
Movies associated to Fig. 3 are available at https://www.aanda.org
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.