Open Access
Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A141 | |
Number of page(s) | 6 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202243970 | |
Published online | 22 August 2022 |
- Astropy Collaboration (Robitaille, T.P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Astropy Collaboration (Price-Whelan, A.M., et al.) 2018, AJ, 156, 123 [NASA ADS] [CrossRef] [Google Scholar]
- Ayçoberry, E., Ajani, V., Guinot, A., et al. 2022, ArXiv e-prints, [arXiv:2284.86288] [Google Scholar]
- Bertin, E. 2011, in Astronomical Society of the Pacific Conference Series, Astronomical Data Analysis Software and Systems XX, eds. I.N. Evans, A. Accomazzi, D.J. Mink, & A.H. Rots, 442, 435 [NASA ADS] [Google Scholar]
- Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bickley, R.W., Bottrell, C., Hani, M.H., et al. 2021, MNRAS, 504, 372 [NASA ADS] [CrossRef] [Google Scholar]
- Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, PASJ, 70, S5 [Google Scholar]
- Chan, J.E.A., Lemon, C., Courbin, F., et al. 2021, A&A, submitted [Google Scholar]
- Dalcin, L., Paz, R., & Storti, M. 2005, J. Parallel Distrib. Comput., 65, 1108 [CrossRef] [Google Scholar]
- Dalcin, L., Paz, R., Storti, M., & D'Elia, J. 2008, J. Parallel Distrib. Comput., 68, 655 [CrossRef] [Google Scholar]
- Dalcin, L.D., Paz, R.R., Kler, P.A., & Cosimo, A. 2011, Adv. Water Resources, 34, 1124 [NASA ADS] [CrossRef] [Google Scholar]
- Desai, S., Armstrong, R., Mohr, J.J., et al. 2012, ApJ, 757, 83 [NASA ADS] [CrossRef] [Google Scholar]
- Ellison, S.L., Viswanathan, A., Patton, D.R., et al. 2019, MNRAS, 487, 2491 [NASA ADS] [CrossRef] [Google Scholar]
- Erben, T., Schirmer, M., Dietrich, J.P., et al. 2005, Astron. Nachr., 326, 432 [NASA ADS] [CrossRef] [Google Scholar]
- Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545 [Google Scholar]
- Fantin, N.J., Côté, P., McConnachie, A.W., et al. 2019, ApJ, 887, 148 [NASA ADS] [CrossRef] [Google Scholar]
- Fantin, N.J., Côté, P., McConnachie, A.W., et al. 2021, ApJ, 913, 30 [NASA ADS] [CrossRef] [Google Scholar]
- Farrens, S., Grigis, A., El Gueddari, L., et al. 2020, Astron. Comput., 32, 100402 [Google Scholar]
- Farrens, S., Lacan, A., Guinot, A., & Vitorelli, A.Z. 2022, A&A, 657, A98 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gatti, M., Sheldon, E., Amon, A., et al. 2021, MNRAS, 504, 4312 [NASA ADS] [CrossRef] [Google Scholar]
- Guinot, A., Kilbinger, M., Farrens, S., et al. 2022, ArXiv e-prints, [arXiv:2284.84798] [Google Scholar]
- Harnois-Déraps, J., & van Waerbeke, L. 2015, MNRAS, 450, 2857 [Google Scholar]
- Harris, C.R., Millman, K.J., van der Walt, S.J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
- Huff, E., & Mandelbaum, R. 2017, ArXiv e-prints, [arXiv:1782.82688] [Google Scholar]
- Hunter, J.D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
- Ibata, R.A., McConnachie, A., Cuillandre, J.-C., et al. 2017a, ApJ, 848, 128 [NASA ADS] [CrossRef] [Google Scholar]
- Ibata, R.A., McConnachie, A., Cuillandre, J.-C., et al. 2017b, ApJ, 848, 129 [NASA ADS] [CrossRef] [Google Scholar]
- Ivezic, Z., Kahn, S.M., Tyson, J.A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
- Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338 [Google Scholar]
- Jarvis, M., Sheldon, E., Zuntz, J., et al. 2016, MNRAS, 460, 2245 [Google Scholar]
- Jensen, J., Thomas, G., McConnachie, A.W., et al. 2021, MNRAS, 507, 1923 [NASA ADS] [CrossRef] [Google Scholar]
- Joblib Development Team. 2020, Joblib: running Python functions as pipeline jobs https://joblib.readthedocs.io [Google Scholar]
- Kiessling, A., Heavens, A.F., Taylor, A.N., & Joachimi, B. 2011, MNRAS, 414, 2235 [NASA ADS] [CrossRef] [Google Scholar]
- Kilbinger, M. 2015, Rep. Progr. Phys., 78, 086901 [Google Scholar]
- Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints, [arXiv:1118.3193] [Google Scholar]
- Liaudat, T., Bonnin, J., Starck, J.L., et al. 2021, A&A, 646, A27 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Mandelbaum, R. 2018, ARA&A, 56, 393 [Google Scholar]
- Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018, PASJ, 70, S25 [Google Scholar]
- Marmo, C., & Bertin, E. 2008, in Astronomical Society of the Pacific Conference Series, Astronomical Data Analysis Software and Systems XVII, eds. R.W. Argyle, P.S. Bunclark, & J.R. Lewis, 394, 619 [NASA ADS] [Google Scholar]
- McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. Stéfan van der Walt, & Jarrod Millman, 56 [CrossRef] [Google Scholar]
- Mohr, J.J., Armstrong, R., Bertin, E., et al. 2012, Software and Cyber Infrastructure for Astronomy II [Google Scholar]
- Petri, A. 2016, Astron. Comput., 17, 73 [NASA ADS] [CrossRef] [Google Scholar]
- Roberts, I.D., Parker, L.C., Gwyn, S., et al. 2022, MNRAS, 509, 1342 [Google Scholar]
- Rowe, B. 2010, MNRAS, 404, 350 [NASA ADS] [Google Scholar]
- Rowe, B.T.P., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10, 121 [NASA ADS] [CrossRef] [Google Scholar]
- Savary, E., Rojas, K., Maus, M., et al. 2021, A&A, submitted [Google Scholar]
- Schirmer, M. 2013, ApJS, 209, 21 [NASA ADS] [CrossRef] [Google Scholar]
- Sheldon, E. 2015, NGMIX: Gaussian mixture models for 2D images, Astrophysics Source Code Library [record ascl:1588.888] [Google Scholar]
- Sheldon, E.S., & Huff, E.M. 2017, ApJ, 841, 24 [NASA ADS] [CrossRef] [Google Scholar]
- Shupe, D.L., Laher, R.R., Storrie-Lombardi, L., et al. 2012, in SPIE Conf. Ser., 8451, 84511M [NASA ADS] [Google Scholar]
- Space Telescope Science Institute & Osservatorio Astronomico di Torino. 2001, VizieR Online Data Catalog: I/271 [Google Scholar]
- Spitzer, I., et al. 2021, MNRAS, submitted [Google Scholar]
- Thanjavur, K., Ivezic, Z., Allam, S.S., et al. 2021, MNRAS, 505, 5941 [NASA ADS] [CrossRef] [Google Scholar]
- The Pandas Development Team. 2020, 18.5281/zenodo.6853272 [Google Scholar]
- Thomas, G.F., McConnachie, A.W., Ibata, R.A., et al. 2018, MNRAS, 481, 5223 [NASA ADS] [CrossRef] [Google Scholar]
- Thomas, G.F., Annau, N., McConnachie, A., et al. 2019a, ApJ, 886, 10 [NASA ADS] [CrossRef] [Google Scholar]
- Thomas, G.F., Laporte, C.F.P., McConnachie, A.W., et al. 2019b, MNRAS, 483, 3119 [NASA ADS] [CrossRef] [Google Scholar]
- Thomas, G.F., Jensen, J., McConnachie, A., et al. 2020, ApJ, 902, 89 [NASA ADS] [CrossRef] [Google Scholar]
- Zuntz, J., Sheldon, E., Samuroff, S., et al. 2018, MNRAS, 481, 1149 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.