Open Access
Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A4 | |
Number of page(s) | 17 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202142463 | |
Published online | 03 August 2022 |
- Abbott, T.M.C., Adamöw, M., Aguena, M., et al. 2021, ApJS, 255, 20 [NASA ADS] [CrossRef] [Google Scholar]
- Aihara, H., AlSayyad, Y., Ando, M., et al. 2019, PASJ, 71, 114 [Google Scholar]
- Blandford, R.D., & Narayan, R. 1992, ARA&A, 30, 311 [NASA ADS] [CrossRef] [Google Scholar]
- Bolton, A.S., Burles, S., Koopmans, L.V.E., et al. 2008, ApJ, 682, 964 [NASA ADS] [CrossRef] [Google Scholar]
- Bonvin, V., Courbin, F., Suyu, S.H., et al. 2017, MNRAS, 465, 4914 [NASA ADS] [CrossRef] [Google Scholar]
- Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., & Lemson, G. 2009, MNRAS, 398, 1150 [NASA ADS] [CrossRef] [Google Scholar]
- Cabanac, R.A., Alard, C., Dantel-Fort, M., et al. 2007, A&A, 461, 813 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P.A., & Maureira, J.-C. 2017, ApJ, 836, 97 [NASA ADS] [CrossRef] [Google Scholar]
- Canameras, R., Schuldt, S., Suyu, S.H., et al. 2020, A&A, 644, A163 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cao, S., Biesiada, M., Gavazzi, R., Piörkowska, A., & Zhu, Z.-H. 2015, ApJ, 806, 185 [NASA ADS] [CrossRef] [Google Scholar]
- Carion, N., Massa, F., Synnaeve, G., et al. 2020, in Computer Vision - ECCV 2020, eds. A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Cham: Springer International Publishing), 213 [Google Scholar]
- Chen, P.-C., Tsai, H., Bhojanapalli, S., et al. 2021, in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (Online and Punta Cana, Dominican Republic: Association for Computational Linguistics), 2974 [CrossRef] [Google Scholar]
- Chianese, M., Coogan, A., Hofma, P., Otten, S., & Weniger, C. 2020, MNRAS, 496, 381 [Google Scholar]
- Collett, T.E., & Auger, M.W. 2014, MNRAS, 443, 969 [NASA ADS] [CrossRef] [Google Scholar]
- Covone, G., Paolillo, M., Napolitano, N.R., et al. 2009, ApJ, 691, 531 [NASA ADS] [CrossRef] [Google Scholar]
- Davies, A., Serjeant, S., & Bromley, J.M. 2019, MNRAS, 487, 5263 [NASA ADS] [CrossRef] [Google Scholar]
- de Jong, J.T.A., Verdoes Kleijn, G.A., Kuijken, K.H., & Valentijn, E.A. 2013, Exp. Astron., 35, 25 [NASA ADS] [CrossRef] [Google Scholar]
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2021, in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 [Google Scholar]
- Fu, J., Liu, J., Tian, H., et al. 2019, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Los Alamitos, CA, USA: IEEE Computer Society), 3141 [Google Scholar]
- Gentile, F., Tortora, C., Covone, G., et al. 2021, MNRAS, 510, 500 [NASA ADS] [CrossRef] [Google Scholar]
- Glorot, X., & Bengio, Y. 2010, in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), 9 [Google Scholar]
- Hartley, P., Flamary, R., Jackson, N., Tagore, A.S., & Metcalf, R.B. 2017, MNRAS, 471, 3378 [NASA ADS] [CrossRef] [Google Scholar]
- Hawkins, D.M. 2004, J. Chem. Information Computer Sci., 44, 1 [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2015, in IEEE International Conference on Computer Vision (ICCV), 1026 [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2016, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
- He, Z., Er, X., Long, Q., et al. 2020, MNRAS, 497, 556 [NASA ADS] [CrossRef] [Google Scholar]
- Hochreiter, S. 1991, Ph.D. thesis Technische Universität München, Germany [Google Scholar]
- Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. 2001, in A Field Guide to Dynamical Recurrent Neural Networks, eds. S.C. Kremer, & J.F. Kolen (USA: IEEE Press) [Google Scholar]
- Huang, X., Storfer, C., Ravi, V., et al. 2020, ApJ, 894, 78 [NASA ADS] [CrossRef] [Google Scholar]
- Huang, X., Storfer, C., Gu, A., et al. 2021, ApJ, 909, 27 [NASA ADS] [CrossRef] [Google Scholar]
- Ivezic, Z., Kahn, S.M., Tyson, J.A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
- Jacobs, C., Glazebrook, K., Collett, T., More, A., & McCarthy, C. 2017, MNRAS, 471, 167 [Google Scholar]
- Jacobs, C., Collett, T., Glazebrook, K., et al. 2019, ApJS, 243, 17 [Google Scholar]
- Kingma, D.P., & Ba, J. 2015, in 3rd International Conference on Learning Representations, ICLR 2015, (San Diego, CA: USA) Conference Track Proceedings, eds. Y. Bengio & Y. LeCun [Google Scholar]
- Koekemoer, A.M. 2019, AAS Meeting Abs., 234, 222.02 [NASA ADS] [Google Scholar]
- Koopmans, L.V.E., Treu, T., Bolton, A.S., Burles, S., & Moustakas, L.A. 2006, ApJ, 649, 599 [NASA ADS] [CrossRef] [Google Scholar]
- Krizhevsky, A., Sutskever, I., & Hinton, G.E. 2012, in Advances in Neural Information Processing Systems 25, eds. F. Pereira, C.J.C. Burges, L. Bottou, & K.Q. Weinberger (USA: Curran Associates, Inc.), 1097 [Google Scholar]
- Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lanusse, F., Ma, Q., Li, N., et al. 2017, MNRAS, 473, 3895 [Google Scholar]
- Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278 [Google Scholar]
- Lenzen, F., Schindler, S., & Scherzer, O. 2004, A&A, 416, 391 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Li, R., Napolitano, N.R., Tortora, C., et al. 2020, ApJ, 899, 30 [NASA ADS] [CrossRef] [Google Scholar]
- Liutkus, A., Cifka, O., Wu, S., et al. 2021, Proc. Mach. Learn. Res., 139, 7067 [Google Scholar]
- Magro, D., Zarb Adami, K., DeMarco, A., Riggi, S., & Sciacca, E. 2021, MNRAS, 505, 6155 [NASA ADS] [CrossRef] [Google Scholar]
- Mallat, S. 2016, Phil. Transa. R. Soc. A, 374, 20150203 [CrossRef] [Google Scholar]
- Marshall, P.J., Verma, A., More, A., et al. 2016, MNRAS, 455, 1171 [NASA ADS] [CrossRef] [Google Scholar]
- McKean, J., Jackson, N., Vegetti, S., et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 84 [Google Scholar]
- Metcalf, R.B., & Petkova, M. 2014, MNRAS, 445, 1942 [NASA ADS] [CrossRef] [Google Scholar]
- Metcalf, R.B., Meneghetti, M., Avestruz, C., et al. 2019, A&A, 625, A119 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Niu, Z., Zhong, G., & Yu, H. 2021, Neurocomputing, 452, 48 [CrossRef] [Google Scholar]
- Parmar, N., Ramachandran, P., Vaswani, A., et al. 2019, in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, (Vancouver, BC: Canada) 68 [Google Scholar]
- Pearson, J., Li, N., & Dye, S. 2019, MNRAS, 488, 991 [Google Scholar]
- Pérez-Carrasco, M., Cabrera-Vives, G., Martinez-Marin, M., et al. 2019, PASP, 131, 108002 [CrossRef] [Google Scholar]
- Petrillo, C.E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129 [NASA ADS] [CrossRef] [Google Scholar]
- Petrillo, C.E., Tortora, C., Chatterjee, S., et al. 2019a, MNRAS, 482, 807 [NASA ADS] [Google Scholar]
- Petrillo, C.E., Tortora, C., Vernardos, G., et al. 2019b, MNRAS, 484, 3879 [NASA ADS] [CrossRef] [Google Scholar]
- Rojas, K., Savary, E., Clément, B., et al. 2021, A&A, submitted, [arXiv: 2189.88814] [Google Scholar]
- Russakovsky, O., Deng, J., Su, H., et al. 2015, Int. J. Comput. Vis., 115, 211 [Google Scholar]
- Scaramella, R., Amiaux, J., Mellier, Y., et al. 2022, A&A, 662, A112 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schaefer, C., Geiger, M., Kuntzer, T., & Kneib, J.-P. 2018, A&A, 611, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Simonyan, K., & Zisserman, A. 2015, in 3rd International Conference on Learning Representations, ICLR 2015 (San Diego, CA: USA) Conference Track Proceedings, eds. Y. Bengio, & Y. LeCun [Google Scholar]
- Srivastava, R.K., Greff, K., & Schmidhuber, J. 2015, CoRR, abs/1505.00387 [arXiv:1585.88387] [Google Scholar]
- Su, J., Lu, Y., Pan, S., Wen, B., & Liu, Y. 2021, CoRR, abs/2104.09864 [arXiv: 2184.89864] [Google Scholar]
- Tan, A., Nguyen, D.T., Dax, M., Nießner, M., & Brox, T. 2021, in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 9799 [Google Scholar]
- Treu, T. 2010, ARA&A, 48, 87 [NASA ADS] [CrossRef] [Google Scholar]
- Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, (Long Beach, CA: USA) 5998 [Google Scholar]
- Verma, A., Collett, T., Smith, G.P., Strong Lensing Science Collaboration, & the DESC Strong Lensing Science Working Group. 2019, ArXiv e-prints [arXiv:1982.85141] [Google Scholar]
- Yang, X. 2020, J. Phys. Conf. Ser., 1693, 012173 [NASA ADS] [CrossRef] [Google Scholar]
- Zhang, H., Goodfellow, I.J., Metaxas, D.N., & Odena, A. 2018, CoRR, abs/1805.08318 [arXiv:1885.88318] [Google Scholar]
- Zhao, H., Jia, J., & Koltun, V. 2020, CoRR, abs/2004.13621 [arXiv:2884.13621] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.