Free Access
Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A134 | |
Number of page(s) | 21 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/202142113 | |
Published online | 19 August 2022 |
- Abbasi, R., Ackermann, M., Adams, J., et al. 2021, J. Instrumentation, 16, 7 [Google Scholar]
- Amari, S.-I. 1993, Neurocomputing, 5, 185 [CrossRef] [Google Scholar]
- Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
- Blandford, R. D., & Königl, A. 1979, ApJ, 232, 34 [Google Scholar]
- Bridle, A. H., & Cohen, M. H. 2012, Observational Details: Radio (John Wiley & Sons, Ltd), 115 [Google Scholar]
- Broten, N. W., Legg, T. H., Locke, J. L., et al. 1967, Science, 156, 1592 [NASA ADS] [CrossRef] [Google Scholar]
- Clark, B. G. 1980, A&A, 89, 377 [NASA ADS] [Google Scholar]
- Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. 2013, ArXiv e-prints, [arXiv:1312.2249] [Google Scholar]
- Ghirlanda, G., Salafia, O. S., Paragi, Z., et al. 2019, Science, 363, 968 [NASA ADS] [CrossRef] [Google Scholar]
- Grainge, K., Alachkar, B., Amy, S., et al. 2017, Astron. Rep., 61, 288 [NASA ADS] [CrossRef] [Google Scholar]
- Gross, S., & Wilber, M. 2016, Training and Investigating Residual Nets http://torch.ch/blog/2016/02/04/resnets.html [Google Scholar]
- Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. (Springer) [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2015a, Deep Residual Learning for Image Recognition [arXiv: 1512.03385] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2015b, in Proceedings of the IEEE International Conference on Computer Vision (ICCV) [Google Scholar]
- Howard, J., & Gugger, S. 2020, Deep Learning for Coders with fastai and PyTorch (O’Reilly Media, Inc.), 205 [Google Scholar]
- Howard, J., et al. 2018, https://github.com/fastai/fastai [Google Scholar]
- Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
- Jaeger, S. 2008, in Astronomical Society of the Pacific Conference Series, Astronomical Data Analysis Software and Systems XVII, eds. R. W. Argyle, P. S. Bunclark, & J. R. Lewis, 394, 623 [NASA ADS] [Google Scholar]
- Kingma, D. P., & Ba, J. 2017, Adam: A Method for Stochastic Optimization Königl, A. 1980, The Physics of Fluids, 23, 1083 [Google Scholar]
- Ledig, C., Theis, L., Huszar, F., et al. 2016, Photo-Realistic Single Image SuperResolution Using a Generative Adversarial Network [arXiv: 1609.04802] [Google Scholar]
- Linhoff, L., Sandrock, A., Kadler, M., Elsässer, D., & Rhode, W. 2020, MNRAS, 500, 4671 [NASA ADS] [CrossRef] [Google Scholar]
- Lister, M. L., Aller, M. F., Aller, H. D., et al. 2013, AJ, 146, 120 [Google Scholar]
- Lister, M. L., Homan, D. C., Hovatta, T., et al. 2019, ApJ, 874, 43 [NASA ADS] [CrossRef] [Google Scholar]
- Liu, W., Anguelov, D., Erhan, D., et al. 2016, in Computer Vision -ECCV 2016, eds. B. Leibe, J. Matas, N. Sebe, & M. Welling (Cham: Springer International Publishing), 21 [CrossRef] [Google Scholar]
- McKinney, W., et al. 2010, in Proceedings of the 9th Python in Science Conference, (TX, Austin) 445, 51 [Google Scholar]
- Morningstar, W. R., Hezaveh, Y. D., Perreault Levasseur, L., et al. 2018, ArXiv e-prints [arXiv: 1808.00011] [Google Scholar]
- Morningstar, W. R., Perreault Levasseur, L., Hezaveh, Y. D., et al. 2019, ApJ, 883, 1 [NASA ADS] [CrossRef] [Google Scholar]
- Napier, P. J., Bagri, D. S., Clark, B. G., et al. 1994, Proc. IEEE, 82, 658 [NASA ADS] [CrossRef] [Google Scholar]
- Needham, T. 1999, Visual Complex Analysis (Oxford University Press), 10 [Google Scholar]
- Offringa, A. R., McKinley, B., Hurley-Walker, N., et al. 2014, MNRAS, 444, 606 [Google Scholar]
- Oliphant, T. E. 2006, A guide to NumPy, 1 (Trelgol Publishing USA) [Google Scholar]
- Ostrovsky, A. S., Martínez-Niconoff, G., Martínez-Vara, P., & Olvera-Santamaría, M. A. 2009, Opt. Express, 17, 1746 [NASA ADS] [CrossRef] [Google Scholar]
- Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems 32, ed. H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, & R. Garnett (Curran Associates, Inc.), 8026 [Google Scholar]
- Renard, S., Malbet, F., Benisty, M., Thiébaut, E., & Berger, J.-P. 2010, A&A, 519, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schmidt, K., Geyer, F., Fröse, S., et al. 2019, https://github.com/radionets-project/radionets [Google Scholar]
- Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1994, Bull. Astron. Soc., 26, 987 [Google Scholar]
- Smirnov, O. M. 2011, A&A, 527, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Taylor, G. B., Carilli, C. L., & Perley, R. A. 1999, in Astronomical Society of the Pacific Conference Series, Synthesis Imaging in Radio Astronomy II, 180 [Google Scholar]
- Thompson, A. R., Moran, J. M., & Swenson, G. W. Jr. 2001a, Introductory Theory of Interferometry and Synthesis Imaging (John Wiley & Sons, Ltd), 72 [Google Scholar]
- Thompson, A. R., Moran, J. M., & Swenson, G. W. Jr. 2001b, Introductory Theory of Interferometry and Synthesis Imaging (John Wiley & Sons, Ltd), 50 [Google Scholar]
- Thompson, A. R., Moran, J. M., & Swenson, G. W. Jr. 2001c, Van Cittert Zernike Theorem, Spatial Coherence, and Scattering (John Wiley & Sons), 594 [Google Scholar]
- Urry, C., & Padovani, P. 1995, PASP, 107, 803 [Google Scholar]
- Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2, e453 [Google Scholar]
- van Haarlem, et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Walter, W. 1990, Analysis I, 2. Auflage (Springer-Verlag Berlin Heidelberg GmbH), 285 [Google Scholar]
- Yang, W., Zhang, X., Tian, Y., et al. 2019, IEEE Trans. Multimedia, 21, 3106 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.