Open Access
Issue
A&A
Volume 662, June 2022
Article Number A109
Number of page(s) 8
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202243250
Published online 28 June 2022
  1. Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33 [Google Scholar]
  2. Akeret, J., Chang, C., Lucchi, A., & Refregier, A. 2017, Astron. Comput., 18, 35 [NASA ADS] [CrossRef] [Google Scholar]
  3. Barbary, K. 2016, J. Open Source Softw., 1, 58 [Google Scholar]
  4. Barbary, K., Boone, K., Craig, M., Deil, C., & Rose, B. 2017, https://doi.org/10.5281/zenodo.896928 [Google Scholar]
  5. Bellm, E. 2014, in The Third Hot-wiring the Transient Universe Workshop, eds. P.R. Wozniak, M.J. Graham, A.A. Mahabal, & R. Seaman, 27 [Google Scholar]
  6. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002 [Google Scholar]
  7. Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Bloemen, S., Groot, P., Woudt, P., et al. 2016, SPIE Conf. Ser., 9906, 990664 [NASA ADS] [Google Scholar]
  9. Bonjean, V. 2020, A&A 634, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Chen, J. S., Huertas, A., & Medioni, G. 1987, IEEE Transac. Patt. Anal. Mach. Intell., 9, 584 [CrossRef] [Google Scholar]
  11. Dice, L. R. 1945, Ecology, 26, 297 [CrossRef] [Google Scholar]
  12. Gaia Collaboration ( Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Gaia Collaboration ( Brown, A.G.A., et al.) 2021, A&A, 649, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, Space Sci. Rev., 123, 485 [Google Scholar]
  15. Giacconi, R., Zirm, A., Wang, J., et al. 2002, ApJS, 139, 369 [Google Scholar]
  16. Groot, P. J. 2019, Nat. Astron., 3, 1160 [NASA ADS] [CrossRef] [Google Scholar]
  17. Groot, P., Bloemen, S., & Jonker, P. 2019, https://doi.org/10.5281/zenodo.3471366 [Google Scholar]
  18. Hosenie, Z., Bloemen, S., Groot, P., et al. 2021, Exp. Astron., 51, 319 [CrossRef] [Google Scholar]
  19. Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
  20. Jonas, J., & MeerKAT Team. 2016, MeerKAT Science: On the Pathway to the SKA 1 [Google Scholar]
  21. Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ, 139, 1782 [Google Scholar]
  22. LeCun, Y., Haffner, Patrickand Bottou, L., & Bengio, Y. 1999, Object Recognition with Gradient-Based Learning (Berlin, Heidelberg: Springer Berlin Heidelberg), 319 [Google Scholar]
  23. Lindeberg, T. 1992, J. Math. Imaging Vision, 1, 65 [CrossRef] [Google Scholar]
  24. Lindeberg, T. 1998, Int. J. Comput. Vision, 30, 79 [CrossRef] [Google Scholar]
  25. Lindeberg, T. 2013, J. Math. Imaging Vis., 46, 177 [CrossRef] [Google Scholar]
  26. Long, J., Shelhamer, E., & Darrell, T. 2015, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Los Alamitos, CA, USA: IEEE Computer Society), 3431 [CrossRef] [Google Scholar]
  27. Makovoz, D., & Marleau, F. R. 2005, PASP, 117, 1113 [NASA ADS] [CrossRef] [Google Scholar]
  28. Mannor, S., Peleg, D., & Rubinstein, R. 2005, in Proceedings of the 22nd International Conference on Machine Learning, ICML ’05 (New York, NY, USA: Association for Computing Machinery), 561 [Google Scholar]
  29. Mróz, P., Otarola, A., Prince, T. A., et al. 2022, ApJ, 924, L30 [CrossRef] [Google Scholar]
  30. Panes, B., Eckner, C., Hendriks, L., et al. 2021, A&A, 656, A62 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, eds. N. Navab, J. Hornegger, W.M. Wells, & A.F. Frangi (Cham: Springer International Publishing), 234 [CrossRef] [Google Scholar]
  32. Savage, R. S., & Oliver, S. 2007, ApJ, 661, 1339 [NASA ADS] [CrossRef] [Google Scholar]
  33. Sotak, G., & Boyer, K. 1989, Comput. Vision Graphics Image Process., 48, 147 [CrossRef] [Google Scholar]
  34. Stetson, P. B. 1987, PASP, 99, 191 [Google Scholar]
  35. Stoppa, F. 2022, https://doi.org/10.5281/zenodo.5938341 [Google Scholar]
  36. Stoppa, & Vreeswijk 2022, https://doi.org/10.5281/zenodo.5902893 [Google Scholar]
  37. Stoppa, F., Vreeswijk, P., Bloemen, S., et al. 2022, Astrophysics Source Code Library [record ascl:2203.014] [Google Scholar]
  38. Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Jorge Cardoso, M. 2017, Lecture Notes in Computer Science (Berlin: Springer), 240 [CrossRef] [Google Scholar]
  39. Taghanaki, S. A., Zheng, Y., Zhou, S. K., et al. 2018, CoRR, abs/1805.02798 [Google Scholar]
  40. Van Dokkum, P. G. 2001, PASP, 113, 1420 [CrossRef] [Google Scholar]
  41. Van Dokkum, P. G., Bloom, J., & Tewes, M. 2012, Astrophysics Source Code Library [record ascl:1207.005] [Google Scholar]
  42. Wang, S., Fan, Z., Li, Z., Zhang, H., & Wei, C. 2020, Remote Sens., 12, 2460 [NASA ADS] [CrossRef] [Google Scholar]
  43. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.