Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | A81 | |
Number of page(s) | 11 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201936919 | |
Published online | 11 February 2020 |
Deep learning for Sunyaev–Zel’dovich detection in Planck
1
Institut d’Astrophysique Spatiale, CNRS, Université Paris-Sud, Bâtiment 121, 91405 Orsay, France
e-mail: victor.bonjean@ias.u-psud.fr
2
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France
Received:
15
October
2019
Accepted:
21
November
2019
The Planck collaboration has extensively used the six Planck HFI frequency maps to detect the Sunyaev–Zel’dovich (SZ) effect with dedicated methods, for example by applying (i) component separation to construct a full-sky map of the y parameter or (ii) matched multi-filters to detect galaxy clusters via their hot gas. Although powerful, these methods may still introduce biases in the detection of the sources or in the reconstruction of the SZ signal due to prior knowledge (e.g. the use of the generalised Navarro, Frenk, and White profile model as a proxy for the shape of galaxy clusters, which is accurate on average but not for individual clusters). In this study, we use deep learning algorithms, more specifically, a U-net architecture network, to detect the SZ signal from the Planck HFI frequency maps. The U-net shows very good performance, recovering the Planck clusters in a test area. In the full sky, Planck clusters are also recovered, together with more than 18 000 other potential SZ sources for which we have statistical indications of galaxy cluster signatures, by stacking at their positions several full-sky maps at different wavelengths (i.e. the cosmic microwave background lensing map from Planck, maps of galaxy over-densities, and the ROSAT X-ray map). The diffuse SZ emission is also recovered around known large-scale structures such as Shapley, A399–A401, Coma, and Leo. Results shown in this proof-of-concept study are promising for potential future detection of galaxy clusters with low SZ pressure with this kind of approach, and more generally, for potential identification and characterisation of large-scale structures of the Universe via their hot gas.
Key words: methods: data analysis / large-scale structure of Universe / cosmology: observations
© V. Bonjean 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.