Free Access
Issue
A&A
Volume 659, March 2022
Article Number A86
Number of page(s) 28
Section Astrophysical processes
DOI https://doi.org/10.1051/0004-6361/202141789
Published online 10 March 2022
  1. Aarseth, S. J., & Hoyle, F. 1964, Astrophys. Norvegica, 9, 313 [NASA ADS] [Google Scholar]
  2. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 848, L12 [Google Scholar]
  3. Antonini, F., Murray, N., & Mikkola, S. 2014, ApJ, 781, 45 [NASA ADS] [CrossRef] [Google Scholar]
  4. Antognini, J. M. O., & Thompson, T. A. 2016, MNRAS, 456, 4219 [NASA ADS] [CrossRef] [Google Scholar]
  5. Applegate, J. H., Douglas, M. R., Gursel, Y., Sussman, G. J., & Wisdom, J. 1986, AJ, 92, 176 [NASA ADS] [CrossRef] [Google Scholar]
  6. Babiuc-Hamilton, M., Brandt, S. R., Diener, P., et al. 2019, The Einstein Toolkit, to find out more, visit http://einsteintoolkit.org [Google Scholar]
  7. Banerjee, S. 2021, MNRAS, 503, 3371 [NASA ADS] [CrossRef] [Google Scholar]
  8. Banerjee, S., & Kroupa, P. 2011, ApJ, 741, L12 [NASA ADS] [CrossRef] [Google Scholar]
  9. Banerjee, S., Baumgardt, H., & Kroupa, P. 2010, MNRAS, 402, 371 [Google Scholar]
  10. Batygin, K., Morbidelli, A., & Holman, M. J. 2015, ApJ, 799, 120 [CrossRef] [Google Scholar]
  11. Bédorf, J., Gaburov, E., & Portegies Zwart, S. 2015, Comput. Astrophys. Cosmol., 2, 8 [CrossRef] [Google Scholar]
  12. Bergé, P., Pomeau, Y., & Vidal, C. 1987, Order Within Chaos (Wiley) [Google Scholar]
  13. Binney, J., & Tremaine, S. 2008, Galactic Dynamics: Second Edition (Princeton University Press) [Google Scholar]
  14. Boekholt, T., & Portegies Zwart, S. 2015, Comput. Astrophys. Cosmol., 2, 2 [NASA ADS] [CrossRef] [Google Scholar]
  15. Boekholt, T. C. N., Portegies Zwart, S. F., & Valtonen, M. 2020, MNRAS, 493, 3932 [NASA ADS] [CrossRef] [Google Scholar]
  16. Boekholt, T. C. N., Moerman, A., & Portegies Zwart, S. F. 2021, Phys. Rev. D, 104, 083020 [CrossRef] [Google Scholar]
  17. Boltzmann, L. 1872, Wiener Berichte, 275 [Google Scholar]
  18. Buchdahl, H. A. 1964, ApJ, 140, 1512 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bulirsch, R., & Stoer, J. 1964, Numer. Math., 6, 413 [CrossRef] [Google Scholar]
  20. Campanelli, M., Lousto, C. O., Zlochower, Y., & Merritt, D. 2007, Phys. Rev. Lett., 98, 231102 [Google Scholar]
  21. Carpintero, D. D., Muzzio, J. C., & Wachlin, F. C. 1999, Celest. Mech. Dyn. Astron., 73, 159 [NASA ADS] [CrossRef] [Google Scholar]
  22. Cornish, N. J., & Levin, J. 2003, Phys. Rev. D, 68, 024004 [NASA ADS] [CrossRef] [Google Scholar]
  23. de Elía, G. C., Zanardi, M., Dugaro, A., & Naoz, S. 2019, A&A, 627, A17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. de Lagrange, J. L. 1772, Chapitre II: Essai sur le Problème des Trois Corps [Google Scholar]
  25. Duncan, M. J., & Quinn, T. 1993, ARA&A, 31, 265 [NASA ADS] [CrossRef] [Google Scholar]
  26. Efimov, S. S., & Sidorenko, V. V. 2020, Cosmic Res., 58, 249 [NASA ADS] [CrossRef] [Google Scholar]
  27. Einstein, A. 1915a, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 778 [Google Scholar]
  28. Einstein, A. 1915b, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 799 [Google Scholar]
  29. Einstein, A., & Grossmann, M. 1914, Z. Math. Phys., 63, 215 [Google Scholar]
  30. Einstein, A., Infeld, L., & Hoffmann, B. 1938, Ann. Math., 65 [NASA ADS] [CrossRef] [Google Scholar]
  31. Euler, L. 1760, Nov. Comm. Acad. Imp. Petropolitanae, 10, 207 [Google Scholar]
  32. Fortin, P., Gouicem, M., & Graillat, S. 2012, in 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing, 407 [CrossRef] [Google Scholar]
  33. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. 2007, ACM Trans. Math. Softw., 33, 13-es [CrossRef] [Google Scholar]
  34. Fukushige, T., & Makino, J. 1994, ApJ, 436, L111 [NASA ADS] [CrossRef] [Google Scholar]
  35. Funato, Y., Hut, P., McMillan, S., & Makino, J. 1996, ApJ, 112, 1697 [CrossRef] [Google Scholar]
  36. Futamase, T., & Itoh, Y. 2007, Liv. Rev. Rel., 10, 2 [NASA ADS] [CrossRef] [Google Scholar]
  37. Gaburov, E., Harfst, S., & Portegies Zwart, S. 2009, New Astron., 14, 630 [Google Scholar]
  38. Galaviz, P. 2011, Phys. Rev. D, 84, 104038 [NASA ADS] [CrossRef] [Google Scholar]
  39. Galaviz, P., & Brügmann, B. 2011, Phys. Rev. D, 83, 084013 [NASA ADS] [CrossRef] [Google Scholar]
  40. Georgakarakos, N. 2008, Celest. Mech. Dyn. Astron., 100, 151 [NASA ADS] [CrossRef] [Google Scholar]
  41. Gieles, M., Erkal, D., Antonini, F., Balbinot, E., & Peñarrubia, J. 2021, Nat. Astron., 5, 957 [NASA ADS] [CrossRef] [Google Scholar]
  42. Goodman, J., Heggie, D. C., & Hut, P. 1993, ApJ, 415, 715 [Google Scholar]
  43. Gragg, W. B. 1965, SIAM J. Numer. Anal., 2, 384 [NASA ADS] [Google Scholar]
  44. Granlund, T., & The GMP development team 2012, GNU MP: The GNU Multiple Precision Arithmetic Library, 5th edn. http://gmplib.org/ [Google Scholar]
  45. Granlund, T., & The GMP development team 2015, GNU MP 6.0 Multiple Precision Arithmetic Library (United Kingdom: Samurai Media Limited) [Google Scholar]
  46. Gropp, W. 2002, in MPICH2: A New Start for MPI Implementations, eds. D. Kranzlmüller, J. Volkert, P. Kacsuk, & J. Dongarra (Berlin, Heidelberg: Springer, Berlin Heidelberg), 7 [Google Scholar]
  47. Gropp, W., Lusk, E., Doss, N., & Skjellum, A. 1996, Parallel Comput., 22, 789 [Google Scholar]
  48. Gültekin, K., Miller, M. C., & Hamilton, D. P. 2006, ApJ, 640, 156 [CrossRef] [Google Scholar]
  49. Gurzadyan, V. G., & Kocharyan, A. A. 1994, J. Phys. Math. Gen., 27, 2879 [NASA ADS] [CrossRef] [Google Scholar]
  50. Hamers, A. S. 2021, MNRAS, 500, 3481 [Google Scholar]
  51. Hamers, A. S., Portegies Zwart, S. F., & Merritt, D. 2014, MNRAS, 443, 355 [NASA ADS] [CrossRef] [Google Scholar]
  52. Hayli, A. 1970, A&A, 7, 249 [NASA ADS] [Google Scholar]
  53. Heggie, D. C. 1988, in Long-term Dynamical Behaviour of Natural and Artificial N-body Systems, ed. A. D. Roy, 329 [CrossRef] [Google Scholar]
  54. Heggie, D. C. 1991, in Predictability, Stability, and Chaos in N-Body Dynamical Systems, eds. S. Roeser, & U. Bastian, 47 [NASA ADS] [CrossRef] [Google Scholar]
  55. Heggie, D. C., & Mathieu, R. D. 1986, in The Use of Supercomputers in Stellar Dynamics, eds. P. Hut, & S. L. W. McMillan (Berlin Springer Verlag), Lect. Notes Phys., 267, 233 [NASA ADS] [CrossRef] [Google Scholar]
  56. Hemsendorf, M., & Merritt, D. 2002, ApJ, 580, 606 [NASA ADS] [CrossRef] [Google Scholar]
  57. Hénon, M. 1971, Ap&SS, 13, 284 [Google Scholar]
  58. Hernandez, D. M., Hadden, S., & Makino, J. 2020, MNRAS, 493, 1913 [NASA ADS] [CrossRef] [Google Scholar]
  59. Hilbert, D. 1915, Gott. Nachr., 27, 395 [Google Scholar]
  60. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  61. Hut, P., & Heggie, D. C. 2002, J. Stat. Phys., 109, 1017 [NASA ADS] [CrossRef] [Google Scholar]
  62. Hut, P., Makino, J., & McMillan, S. 1995, ApJ, 443, L93 [NASA ADS] [CrossRef] [Google Scholar]
  63. Iorio, L. 2020, Universe, 6, 53 [CrossRef] [Google Scholar]
  64. ISO 1998, ISO/IEC 14882:1998: Programming languages - C++, 732, Available in electronic form for online purchase at http://webstore.ansi.org/ and http://www.cssinfo.com/ [Google Scholar]
  65. Itoh, Y. 2009, Phys. Rev. D, 80, 124003 [NASA ADS] [CrossRef] [Google Scholar]
  66. Kandrup, H. E. 1998, Ann. New York Acad. Sci., 867, 320 [NASA ADS] [Google Scholar]
  67. Kandrup, H. E., & Smith, H., Jr. 1991, ApJ, 374, 255 [NASA ADS] [CrossRef] [Google Scholar]
  68. Kandrup, H. E., & Smith, H., Jr. 1992, ApJ, 386, 635 [NASA ADS] [CrossRef] [Google Scholar]
  69. Kandrup, H. E., Smith, H. Jr., & Willmes, D. E. 1992, ApJ, 399, 627 [NASA ADS] [CrossRef] [Google Scholar]
  70. Kandrup, H. E., Mahon, M. E., & Smith, H. Jr. 1994, ApJ, 428, 458 [NASA ADS] [CrossRef] [Google Scholar]
  71. Kepler, J. 1609, Astron. Nova, 1 [Google Scholar]
  72. Kerr, R. P. 1963, Phys. Rev. Lett., 11, 237 [Google Scholar]
  73. King, I. R. 1966, AJ, 71, 64 [Google Scholar]
  74. Kozai, Y. 1962, AJ, 67, 591 [Google Scholar]
  75. Kustaanheimo, P., & Stiefel, E. 1965, J. Reine. Angew. Math., 218, 204 [Google Scholar]
  76. Lakshmanan, M., & Rajasekar, S. 2003, Chaos in Conservative Systems (Berlin, Heidelberg: Springer, Berlin Heidelberg), 191 [Google Scholar]
  77. Laskar, J., & Gastineau, M. 2009, Nature, 459, 817 [NASA ADS] [CrossRef] [Google Scholar]
  78. Laskar, J., Quinn, T., & Tremaine, S. 1992, Icarus, 95, 148 [NASA ADS] [CrossRef] [Google Scholar]
  79. Lidov, M. 1962, Planet. Space Sci., 9, 719 [Google Scholar]
  80. Lim, H., & Rodriguez, C. L. 2020, Phys. Rev. D, 102, 064033 [NASA ADS] [CrossRef] [Google Scholar]
  81. Lorentz, H., & Droste, J. 1917, in Verslag Koninklijker Akademie van Wetenschchappen, 26, 392 [Google Scholar]
  82. Lousto, C. O., & Nakano, H. 2008, CQG, 25, 195019 [NASA ADS] [CrossRef] [Google Scholar]
  83. Makino, J. 1991, ApJ, 369, 200 [Google Scholar]
  84. Makino, J. 2002, New Astron., 7, 373 [NASA ADS] [CrossRef] [Google Scholar]
  85. Makino, J., & Taiji, M. 1996, Comput. Phys., 10, 352 [NASA ADS] [CrossRef] [Google Scholar]
  86. Makino, J., & Taiji, M. 1998, in Scientific simulations with special-purpose computers : The GRAPE systems, eds. J. Makino, & M. Taiji (Chichester; Toronto: John Wiley& Sons), c1998 [Google Scholar]
  87. McMillan, S. L. W. 1986, in The Use of Supercomputers in Stellar Dynamics, eds. P. Hut, & S. L. W. McMillan, (Berlin Springer Verlag), Lect. Notes Phys., 267, 156 [NASA ADS] [CrossRef] [Google Scholar]
  88. McMillan, S. L. W. 2014, in AAS/Division of Dynamical Astronomy Meeting, AAS/Div. Dyn. Astron. Meeting, 45, 303.01 [NASA ADS] [Google Scholar]
  89. Meiron, Y., Kocsis, B., & Loeb, A. 2017, ApJ, 834, 200 [NASA ADS] [CrossRef] [Google Scholar]
  90. Mel’nikov, A. V., Orlov, V. V., & Shevchenko, I. I. 2013, Astron. Rep., 57, 429 [CrossRef] [Google Scholar]
  91. Merritt, D. 2013, Dynamics and Evolution of Galactic Nuclei [Google Scholar]
  92. Mewes, V., Zlochower, Y., Campanelli, M., et al. 2018, Phys. Rev. D, 97, 084059 [Google Scholar]
  93. Mewes, V., Zlochower, Y., Campanelli, M., et al. 2020, Phys. Rev. D, 101, 104007a [NASA ADS] [CrossRef] [Google Scholar]
  94. Mikkola, S., & Merritt, D. 2006, MNRAS, 372, 219 [NASA ADS] [CrossRef] [Google Scholar]
  95. Mikkola, S., & Merritt, D. 2008, AJ, 135, 2398 [Google Scholar]
  96. Mikkola, S., & Tanikawa, K. 1999, MNRAS, 310, 745 [NASA ADS] [CrossRef] [Google Scholar]
  97. Milani, A., & Nobili, A. M. 1992, Nature, 357, 569 [Google Scholar]
  98. Miller, R. H. 1964, ApJ, 140, 250 [NASA ADS] [CrossRef] [Google Scholar]
  99. Montgomery, R. 1998, Nonlinearity, 11, 363 [NASA ADS] [CrossRef] [Google Scholar]
  100. Moore, C. 1993, Phys. Rev. Lett., 3675 [NASA ADS] [CrossRef] [Google Scholar]
  101. Muno, M. P., Baganoff, F. K., Bautz, M. W., et al. 2004, ApJ, 613, 326 [NASA ADS] [CrossRef] [Google Scholar]
  102. Muzzio, J. C., & Mosquera, M. E. 2004, Celest. Mech. Dyn. Astron., 88, 379 [NASA ADS] [CrossRef] [Google Scholar]
  103. Muzzio, J. C., Navone, H. D., & Zorzi, A. F. 2009, Celest. Mech. Dyn. Astron., 105, 379 [NASA ADS] [CrossRef] [Google Scholar]
  104. Naoz, S., Kocsis, B., Loeb, A., & Yunes, N. 2013a, ApJ, 773, 187 [NASA ADS] [CrossRef] [Google Scholar]
  105. Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2013b, MNRAS, stt302 [Google Scholar]
  106. Neilsen, D., Jay, J., & Morgan, T. 2014, in APS April Meeting Abstracts, APS Meeting Abstracts, 2014, M15.008 [Google Scholar]
  107. Newton, I. 1687, Philosophiae Naturalis Principia Mathematica, 1 [Google Scholar]
  108. Nieto, J. A., Saucedo, J., & Villanueva, V. M. 2003, Phys. Lett. A, 312, 175 [CrossRef] [Google Scholar]
  109. Nitadori, K., & Makino, J. 2008, New Astron., 13, 498 [NASA ADS] [CrossRef] [Google Scholar]
  110. Oliphant, T. E. 2006, A guide to NumPy,, 1 (USA: Trelgol Publishing) [Google Scholar]
  111. Parvulesco, C. 1924, Bull. Astron., 5, 72 [NASA ADS] [Google Scholar]
  112. Plummer, H. C. 1911, MNRAS, 71, 460 [Google Scholar]
  113. Poisson, E., & Will, C. M. 2014, Gravity [Google Scholar]
  114. Portegies Zwart, S., & Boekholt, T. 2014, ApJ, 785, L3 [NASA ADS] [CrossRef] [Google Scholar]
  115. Portegies Zwart, S. F., & Boekholt, T. C. N. 2018, Commun. Nonlinear Sci. Numer. Simul., 61, 160 [NASA ADS] [CrossRef] [Google Scholar]
  116. Portegies Zwart, S., & McMillan, S. 2018, Astrophysical Recipes; The art of AMUSE [Google Scholar]
  117. Portegies Zwart, S. F., Hut, P., Makino, J., & McMillan, S. L. W. 1998, A&A, 337, 363 [NASA ADS] [Google Scholar]
  118. Portegies Zwart, S. F., Baumgardt, H., McMillan, S. L. W., et al. 2006, ApJ, 641, 319 [NASA ADS] [CrossRef] [Google Scholar]
  119. Portegies Zwart, S. F., Belleman, R. G., & Geldof, P. M. 2007, New Astron., 12, 641 [Google Scholar]
  120. Portegies Zwart, S., McMillan, S., Groen, D., et al. 2008, New Astron., 13, 285 [NASA ADS] [CrossRef] [Google Scholar]
  121. Portegies Zwart, S., McMillan, S., Harfst, S., et al. 2009, New Astron., 14, 369 [Google Scholar]
  122. Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431 [NASA ADS] [CrossRef] [Google Scholar]
  123. Portegies Zwart, S. F., McMillan, S. L., van Elteren, A., Pelupessy, F. I., & de Vries, N. 2013, Comput. Phys. Commun., 184, 456 [NASA ADS] [CrossRef] [Google Scholar]
  124. Portegies Zwart, S., van Elteren, A., Pelupessy, I., et al. 2018, AMUSE: the Astrophysical Multipurpose Software Environment [CrossRef] [Google Scholar]
  125. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992. Numerical recipes in C. The art of scientific computing, 2nd edn. (Cambridge: University Press), c1992 [Google Scholar]
  126. Pretorius, F. 2005, Phys. Rev. Lett., 95, 121101 [NASA ADS] [CrossRef] [Google Scholar]
  127. Rimoldi, A., Rossi, E. M., Piran, T., & Portegies Zwart, S. 2015, MNRAS, 447, 3096 [NASA ADS] [CrossRef] [Google Scholar]
  128. Robson, T., Cornish, N. J., Tamanini, N., & Toonen, S. 2018, Phys. Rev. D, 98, 064012 [NASA ADS] [CrossRef] [Google Scholar]
  129. Schäfer, G. 1987, Phys. Lett. A, 123, 336 [CrossRef] [Google Scholar]
  130. Schwarzschild, K. 1916, Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin, 1907, 1916, 189 [Google Scholar]
  131. Shivamoggi, B. K. 2014, Chaos in Dissipative Systems (Dordrecht, Netherlands: Springer), 189 [Google Scholar]
  132. Spitzer, L. 1971, in Pontificiae Academiae Scientiarum Scripta Varia, Proceedings of a Study Week on Nuclei of Galaxies, held in Rome, April 13–18, 1970, Amsterdam: North Holland, and New York: American Elsevier, 1971, ed. D. J. K. O’Connell, 443 [Google Scholar]
  133. Spitzer, L. 1987, Dynamical Evolution of Globular Clusters (Princeton, NJ: Princeton University Press), 191 [Google Scholar]
  134. Spitzer, L. J., & Hart, M. H. 1971a, ApJ, 164, 399 [NASA ADS] [CrossRef] [Google Scholar]
  135. Spitzer, L. J., & Hart, M. H. 1971b, ApJ, 166, 483 [NASA ADS] [CrossRef] [Google Scholar]
  136. Spyrou, N. 1975, ApJ, 197, 725 [NASA ADS] [CrossRef] [Google Scholar]
  137. Stephan, A. P., Naoz, S., & Gaudi, B. S. 2021, ApJ, 922, 4 [NASA ADS] [CrossRef] [Google Scholar]
  138. Stiefel, E. L., & Scheifele, G. 1975, Linear and regular celestial mechanics. Perturbed two-body motion. Numerical methods. Canonical theory [Google Scholar]
  139. Tokovinin, A. 2014, AJ, 147, 87 [CrossRef] [Google Scholar]
  140. Urminsky, D. J., & Heggie, D. C. 2009, MNRAS, 392, 1051 [NASA ADS] [CrossRef] [Google Scholar]
  141. Valluri, M., & Merritt, D. 2000, in The Chaotic Universe, eds. V. G. Gurzadyan, & R. Ruffini, 229 [NASA ADS] [CrossRef] [Google Scholar]
  142. van Albada, T. S. 1968, Bull. Astron. Inst. Neth., 19, 479 [Google Scholar]
  143. van Rossum, G. 1995, Extending and embedding the Python interpreter, Report CS-R9527, pub-CWI, pub-CWI:adr [Google Scholar]
  144. Verlet, L. 1967, Phys. Rev., 159, 98 [CrossRef] [Google Scholar]
  145. von Hoerner, S. 1960, Z. Astrophys., 50, 184 [NASA ADS] [Google Scholar]
  146. von Zeipel, H. 1910, Astron. Nachr., 183, 345 [Google Scholar]
  147. Waldvogel, J. 2006, Celest. Mech. Dyn. Astron., 95, 201 [NASA ADS] [CrossRef] [Google Scholar]
  148. Waldvogel, J. 2008, Celest. Mech. Dyn. Astron., 102, 149 [NASA ADS] [CrossRef] [Google Scholar]
  149. Wanex, L. F. 2002, PhD Thesis, University of Nevada, Reno, USA [Google Scholar]
  150. Weinberg, S. 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity [Google Scholar]
  151. Weinstein, G. 2012, ArXiv e-prints [arXiv:1202.2791] [Google Scholar]
  152. Will, C. M. 2011, Proc. Nat. Acad. Sci., 108, 5938 [NASA ADS] [CrossRef] [Google Scholar]
  153. Will, C. M. 2014, Phys. Rev. D, 89, 044043 [NASA ADS] [CrossRef] [Google Scholar]
  154. Will, C. M. 2021, Phys. Rev. D, 103, 063003 [NASA ADS] [CrossRef] [Google Scholar]
  155. Wu, X., & Huang, T.-Y. 2003, Phys. Lett. A, 313, 77 [CrossRef] [Google Scholar]
  156. Zadunaisky, P. E. 1979, Celest. Mech., 20, 209 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.