Free Access
Issue
A&A
Volume 658, February 2022
Article Number A110
Number of page(s) 11
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202141874
Published online 07 February 2022
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from http://tensorflow.org/ [Google Scholar]
  2. Abazajian, K., Addison, G., Adshead, P., et al. 2019, CMB-S4 Decadal Survey APC White Paper [CrossRef] [Google Scholar]
  3. Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, JCAP, 2019, 056 [Google Scholar]
  4. Barreiro, R. B., Sanz, J. L., Herranz, D., & Martínez-González, E. 2003, MNRAS, 342, 119 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bennett, C. L., Bay, M., Halpern, M., et al. 2003, ApJ, 583, 1 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bonavera, L., Suarez Gomez, S. L., González-Nuevo, J., et al. 2021, A&A, 648, A50 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Cai, Z.-Y., Lapi, A., Xia, J.-Q., et al. 2013, ApJ, 768, 21 [NASA ADS] [CrossRef] [Google Scholar]
  8. Carvalho, P., Rocha, G., & Hobson, M. P. 2009, MNRAS, 393, 681 [NASA ADS] [CrossRef] [Google Scholar]
  9. Cauchy, A. 1847, C.R. Acad. Sci. Paris, 25, 536 [Google Scholar]
  10. Chen, X., & Wright, E. L. 2008, ApJ, 681, 747 [NASA ADS] [CrossRef] [Google Scholar]
  11. Chiang, L. Y., Jørgensen, H. E., Naselsky, I. P., et al. 2002, MNRAS, 335, 1054 [NASA ADS] [CrossRef] [Google Scholar]
  12. Dai, J., Li, Y., He, K., & Sun, J. 2016, in Advances in Neural Information Processing Systems, 379 [Google Scholar]
  13. Delabrouille, J., Melin, J. B., & Bartlett, J. G. 2002, in Simulations of Sunyaev-Zel’dovich Maps and Their Applications, eds. L. W. Chen, C. P. Ma, K. W. Ng, & U. L. Pen, ASP Conf. Ser., 257, 81 [Google Scholar]
  14. Delabrouille, J., Betoule, M., Melin, J. B., et al. 2013, A&A, 553, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Dole, H., Lagache, G., Puget, J.-L., et al. 2006, A&A, 451, 417 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Duchi, J., Hazan, E., & Singer, Y. 2011, J. Mach. Learn. Res., 12, 2121 [Google Scholar]
  17. Eddington, A. S. 1913, MNRAS, 73, 359 [Google Scholar]
  18. Fernández-Cobos, R., Vielva, P., Barreiro, R. B., & Martínez-González, E. 2012, MNRAS, 420, 2162 [Google Scholar]
  19. Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, ApJ, 524, 867 [NASA ADS] [CrossRef] [Google Scholar]
  20. Fluri, J., Kacprzak, T., Lucchi, A., et al. 2019, Phys. Rev. D, 100, 063514 [Google Scholar]
  21. García Riesgo, F., Suárez Gómez, S. L., Sánchez Lasheras, F., et al. 2019, in Hybrid Artificial Intelligent Systems, eds. H. Pérez García, L. Sánchez González, M. Castejón Limas, et al. (Cham: Springer International Publishing), 335 [CrossRef] [Google Scholar]
  22. George, D., & Huerta, E. A. 2018, Phys. Lett. B, 778, 64 [NASA ADS] [CrossRef] [Google Scholar]
  23. Giusarma, E., Reyes Hurtado, M., Villaescusa-Navarro, F., et al. 2019, ArXiv e-prints [arXiv:1910.04255] [Google Scholar]
  24. Giusti, A., Cireşan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. 2013, 2013 IEEE International Conference on Image Processing (IEEE), 4034 [Google Scholar]
  25. González-Nuevo, J., Toffolatti, L., & Argüeso, F. 2005, ApJ, 621, 1 [Google Scholar]
  26. González-Nuevo, J., Argüeso, F., López-Caniego, M., et al. 2006, MNRAS, 369, 1603 [Google Scholar]
  27. Goodfellow, I. J., Bengio, Y., & Courville, A. 2016, Deep Learning (Cambridge, MA, USA: MIT Press), http://www.deeplearningbook.org [Google Scholar]
  28. Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 [Google Scholar]
  29. Granato, G. L., De Zotti, G., Silva, L., Bressan, A., & Danese, L. 2004, ApJ, 600, 580 [Google Scholar]
  30. Graves, A., Mohamed, A. R., & Hinton, G. 2013, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE), 6645 [Google Scholar]
  31. Hanany, S., Alvarez, M., Artis, E., et al. 2019, ArXiv e-prints [arXiv:1902.10541] [Google Scholar]
  32. Hastie, T., Tibshirani, R., & Friedman, J. 2001, The Elements of Statistical Learning, Springer Series in Statistics (New York, NY, USA: Springer, New York Inc.) [CrossRef] [Google Scholar]
  33. Hauser, M. G., & Dwek, E. 2001, ARA&A, 39, 249 [Google Scholar]
  34. He, S., Li, Y., Feng, Y., et al. 2019, Proc. Nat. Acad. Sci., 116, 13825 [Google Scholar]
  35. Herranz, D., & Sanz, J. L. 2008, IEEE J. Sel. Top. Signal Process., 2, 727 [CrossRef] [Google Scholar]
  36. Herranz, D., Gallegos, J., Sanz, J. L., & Martínez-González, E. 2002a, MNRAS, 334, 533 [NASA ADS] [CrossRef] [Google Scholar]
  37. Herranz, D., Sanz, J. L., Barreiro, R. B., & Martínez-González, E. 2002b, ApJ, 580, 610 [Google Scholar]
  38. Herranz, D., López-Caniego, M., Sanz, J. L., & González-Nuevo, J. 2009, MNRAS, 394, 510 [NASA ADS] [CrossRef] [Google Scholar]
  39. Herranz, D., Argüeso, F., Toffolatti, L., Manjón-García, A., & López-Caniego, M. 2021, A&A, 651, A24 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Hezaveh, Y. D., Perreault Levasseur, L., & Marshall, P. J. 2017, Nature, 548, 555 [Google Scholar]
  41. Hobson, M. P., & McLachlan, C. 2003, MNRAS, 338, 765 [NASA ADS] [CrossRef] [Google Scholar]
  42. Hopkins, A. M., Whiting, M. T., Seymour, N., et al. 2015, PASA, 32 [CrossRef] [Google Scholar]
  43. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  44. Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python [Google Scholar]
  45. Juez, F. J., Lasheras, F. S., Roqueñí, N., & Osborn, J. 2012, Sensors, 12, 8895 [Google Scholar]
  46. Kiefer, J., & Wolfowitz, J. 1952, Ann. Math. Stat., 23, 462 [CrossRef] [Google Scholar]
  47. Kim, E. J., & Brunner, R. J. 2017, MNRAS, 464, 4463 [Google Scholar]
  48. Lapi, A., Shankar, F., Mao, J., et al. 2006, ApJ, 650, 42 [Google Scholar]
  49. Lapi, A., González-Nuevo, J., Fan, L., et al. 2011, ApJ, 742, 24 [NASA ADS] [CrossRef] [Google Scholar]
  50. Leach, S. M., Cardoso, J. F., Baccigalupi, C., et al. 2008, A&A, 491, 597 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. LeCun, Y., Boser, B., Denker, J. S., et al. 1989, Neural Comput., 1, 541 [NASA ADS] [CrossRef] [Google Scholar]
  52. LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [Google Scholar]
  53. Long, J., Shelhamer, E., & Darrell, T. 2015, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431 [Google Scholar]
  54. López-Caniego, M., Herranz, D., Barreiro, R. B., & Sanz, J. L. 2004, in Computational Imaging II, eds. C. A. Bouman, & E. L. Miller, SPIE Conf. Ser., 5299, 145 [CrossRef] [Google Scholar]
  55. López-Caniego, M., Herranz, D., Barreiro, R. B., & Sanz, J. L. 2005a, MNRAS, 359, 993 [CrossRef] [Google Scholar]
  56. López-Caniego, M., Herranz, D., Sanz, J. L., & Barreiro, R. B. 2005b, EURASIP J. Appl. Signal Process., 2005, 985049 [Google Scholar]
  57. López-Caniego, M., Herranz, D., González-Nuevo, J., et al. 2006, MNRAS, 370, 2047 [Google Scholar]
  58. López-Caniego, M., González-Nuevo, J., Herranz, D., et al. 2007, ApJS, 170, 108 [Google Scholar]
  59. Martínez-González, E., Diego, J. M., Vielva, P., & Silk, J. 2003, MNRAS, 345, 1101 [Google Scholar]
  60. Mathuriya, A., Bard, D., Mendygral, P., et al. 2018, ArXiv e-prints [arXiv:1808.04728] [Google Scholar]
  61. Mitchell, T. M. 1997, Machine Learning (New York: McGraw-Hill) [Google Scholar]
  62. Miville-Deschênes, M. A., Lagache, G., Boulanger, F., & Puget, J. L. 2007, A&A, 469, 595 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Mustafa, M., Bard, D., Bhimji, W., et al. 2019, Comput. Astrophys. Cosmol., 6, 1 [Google Scholar]
  64. Nair, V., & Hinton, G. E. 2010, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807 [Google Scholar]
  65. Naselsky, P., Novikov, D., & Silk, J. 2002, MNRAS, 335, 550 [NASA ADS] [CrossRef] [Google Scholar]
  66. Negrello, M., Clemens, M., Gonzalez-Nuevo, J., et al. 2013, MNRAS, 429, 1309 [Google Scholar]
  67. Oliphant, T. 2006, NumPy: A guide to NumPy (USA:Trelgol Publishing) [Google Scholar]
  68. Pearson, W. J., Wang, L., Alpaslan, M., et al. 2019, A&A, 631, A51 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Pérez, F., & Granger, B. E. 2007, Comput. Sci. Eng., 9, 21 [Google Scholar]
  70. Perraudin, N., Srivastava, A., Lucchi, A., et al. 2019, Comput. Astrophys. Cosmol., 6, 5 [Google Scholar]
  71. Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129 [Google Scholar]
  72. Planck Collaboration VII. 2011, A&A, 536, A7 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  73. Planck Collaboration XXVIII. 2014, A&A, 571, A28 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Planck Collaboration XXVI. 2016, A&A, 594, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Planck Collaboration LIV. 2018, A&A, 619, A94 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  76. Planck Collaboration I. 2020, A&A, 641, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  77. Planck Collaboration IV. 2020, A&A, 641, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  78. Puget, J. L., Abergel, A., Bernard, J. P., et al. 1996, A&A, 308, L5 [Google Scholar]
  79. Riesgo, F. G., Gómez, S. L. S., Rodríguez, J. D. S., et al. 2020, in Hybrid Artificial Intelligent Systems eds. E. A. de la Cal, J. R. Villar Flecha, H. Quintián, & E. Corchado (Cham: Springer International Publishing), 674 [Google Scholar]
  80. Ronneberger, O., Fischer, P., & Brox, T. 2015, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 [Google Scholar]
  81. Rubiño-Martín, J. A., Rebolo, R., Aguiar, M., et al. 2012, in The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions, SPIE Conf. Ser., 8444, 84442Y [Google Scholar]
  82. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Nature, 323, 533 [Google Scholar]
  83. Sanz, J. L., Herranz, D., & Martínez-Gónzalez, E. 2001, ApJ, 552, 484 [NASA ADS] [CrossRef] [Google Scholar]
  84. Sanz, J. L., Herranz, D., Lopez-Caniego, M., & Argueso, F. 2006, ArXiv e-prints [arXiv:astro-ph/0609351] [Google Scholar]
  85. Suárez Gómez, S. L., González-Gutiérrez, C., Suárez, J. D., et al. 2020, Logic J. IGPL, 29, 180 [Google Scholar]
  86. Suárez Gómez, S. L., García Riesgo, F., González Gutiérrez, C., Rodríguez Ramos, L. F., & Santos, J. D. 2021, Mathematics, 9 [Google Scholar]
  87. Tegmark, M., & de Oliveira-Costa, A. 1998, ApJ, 500, L83 [Google Scholar]
  88. Toffolatti, L., Argueso Gomez, F., de Zotti, G., et al. 1998, MNRAS, 297, 117 [Google Scholar]
  89. Tucci, M., Toffolatti, L., de Zotti, G., & Martínez-González, E. 2011, A&A, 533, A57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  90. Vielva, P., Barreiro, R., Hobson, M., et al. 2001, MNRAS, 328, 1 [NASA ADS] [CrossRef] [Google Scholar]
  91. Vielva, P., Martínez-González, E., Gallegos, J. E., Toffolatti, L., & Sanz, J. L. 2003, MNRAS, 344, 89 [Google Scholar]
  92. Zonca, A., Singer, L. P., Lenz, D., et al. 2019, J. Open Sour. Software, 4, 1298 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.