Free Access
Issue
A&A
Volume 655, November 2021
Article Number A56
Number of page(s) 12
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202141360
Published online 19 November 2021
  1. Amado, Z. B., Pović, M., Sánchez-Portal, M., et al. 2019, MNRAS, 485, 1528 [NASA ADS] [CrossRef] [Google Scholar]
  2. Armano, G. 2015, Inf. Sci., 325, 466 [Google Scholar]
  3. Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540 [Google Scholar]
  4. Banerji, M., Lahav, O., Lintott, C. J., et al. 2010, MNRAS, 406, 342 [Google Scholar]
  5. Benítez, N., Moles, M., Aguerri, J. A. L., et al. 2009, ApJ, 692, L5 [Google Scholar]
  6. Bom, C. R., Makler, M., Albuquerque, M. P., & Brandt, C. H. 2017, A&A, 597, A135 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Bongiovanni, A., Ramón-Pérez, M., Pérez García, A. M., et al. 2019, A&A, 631, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Boughorbel, S., Jarray, F., & El-Anbari, M. 2017, PLOS ONE, 12 [Google Scholar]
  9. Brescia, M., Cavuoti, S., Longo, G., & De Stefano, V. 2014, A&A, 568, A126 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 [NASA ADS] [CrossRef] [Google Scholar]
  11. Calvi, R., Poggianti, B. M., Fasano, G., & Vulcani, B. 2012, MNRAS, 419, L14 [NASA ADS] [CrossRef] [Google Scholar]
  12. Carrasco Kind, M., & Brunner, R. J. 2013, MNRAS, 432, 1483 [Google Scholar]
  13. Chollet, F. 2017, Deep learning with Python (Manning Publications Co.) [Google Scholar]
  14. Chollet, F., & Allaire, J. J. 2017, Deep learning with R (Manning Publications Co.) [Google Scholar]
  15. Coleman, G. D., Wu, C.-C., & Weedman, D. W. 1980, ApJS, 43, 393 [CrossRef] [Google Scholar]
  16. Cunha, C. E., Huterer, D., Lin, H., Busha, M. T., & Wechsler, R. H. 2014, MNRAS, 444, 129 [NASA ADS] [CrossRef] [Google Scholar]
  17. Cybenko, G. 1989, Math. Control Signal Syst., 2, 303 [NASA ADS] [CrossRef] [Google Scholar]
  18. Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, L1 [NASA ADS] [CrossRef] [Google Scholar]
  19. de Diego, J. A., Nadolny, J., Bongiovanni, A., et al. 2020, A&A, 638, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Deng, X.-F. 2013, Res. Astron. Astrophys., 13, 651 [Google Scholar]
  21. Deng, J., Dong, W., Socher, R., et al. 2009, in 2009 IEEE Conference on Computer Vision and Pattern Recognitionm (IEEE), 248 [CrossRef] [Google Scholar]
  22. Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
  23. Doi, M., Fukugita, M., Okamura, S., & Turner, E. L. 1995, AJ, 109, 1490 [NASA ADS] [CrossRef] [Google Scholar]
  24. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., & Fischer, J. L. 2018, MNRAS, 476, 3661 [Google Scholar]
  25. Eriksen, M., Alarcon, A., Cabayol, L., et al. 2020, MNRAS, 497, 4565 [CrossRef] [Google Scholar]
  26. Fawcett, T. 2004, MLear, 31, 1 [Google Scholar]
  27. Firth, A. E., Lahav, O., & Somerville, R. S. 2003, MNRAS, 339, 1195 [NASA ADS] [CrossRef] [Google Scholar]
  28. Flach, P. A. 2003, Twentieth International Conference on Machine Learning (ICML-2003) (AAAI Press) [Google Scholar]
  29. Fürnkranz, J., & Flach, P. A. 2005, MLear, 58, 39 [Google Scholar]
  30. Georgakakis, A., Rowan-Robinson, M., Nandra, K., et al. 2010, MNRAS, 406, 420 [NASA ADS] [CrossRef] [Google Scholar]
  31. Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. 2017, in Proceedings of the 34th International Conference on Machine Learning, eds. D. Precup, & Y. W. Teh, Proc. Mach. Learning Res., 70, 1321 [Google Scholar]
  32. Haixiang, G., Yijing, L., Shang, J., et al. 2017, Expert Syst. Appl., 73, 220 [Google Scholar]
  33. Hildebrandt, H., Arnouts, S., Capak, P., et al. 2010, A&A, 523, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Hornik, K. 1991, Neural Net., 4, 251 [CrossRef] [Google Scholar]
  35. Huertas-Company, M., Rouan, D., Tasca, L., Soucail, G., & Le Fèvre, O. 2008, A&A, 478, 971 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236 [NASA ADS] [CrossRef] [Google Scholar]
  38. James, G., Witten, D., Hastie, T., & Tibshirani, R. 2013, An Introduction to Statistical Learning: with Applications in R, Springer Texts in Statistics (New York: Springer), xvi, 426 [Google Scholar]
  39. Jones, E., & Singal, J. 2017, A&A, 600, A113 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Khramtsov, V., Akhmetov, V., & Fedorov, P. 2020, A&A, 644, A69 [EDP Sciences] [Google Scholar]
  41. Kinney, A. L., Calzetti, D., Bohlin, R. C., et al. 1996, ApJ, 467, 38 [NASA ADS] [CrossRef] [Google Scholar]
  42. Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. 1993, Neural Net., 6, 861 [CrossRef] [Google Scholar]
  43. Lintott, C. E. A. 2011, MNRAS, 410, 166 [CrossRef] [Google Scholar]
  44. Marmanis, D., Datcu, M., Esch, T., & Stilla, U. 2015, IEEE Geosci. Remote Sens. Lett., 13, 105 [Google Scholar]
  45. Matthews, D. J., Newman, J. A., Coil, A. L., Cooper, M. C., & Gwyn, S. D. J. 2013, ApJS, 204, 21 [NASA ADS] [CrossRef] [Google Scholar]
  46. McLean, I. S., Steidel, C. C., Epps, H., et al. 2010, Int. Soc. Opt. Photonics, 7735, 77351E [NASA ADS] [Google Scholar]
  47. McLean, I. S., Steidel, C. C., Epps, H. W., et al. 2012, Int. Soc. Opt. Photonics, 8446, 84460J [NASA ADS] [Google Scholar]
  48. Menou, K. 2019, MNRAS, 489, 4802 [NASA ADS] [CrossRef] [Google Scholar]
  49. Metz, C. 1978, Semin. Nucl. Med., 8, 283 [Google Scholar]
  50. Mucesh, S., Hartley, W. G., Palmese, A., et al. 2021, MNRAS, 502, 2770 [NASA ADS] [CrossRef] [Google Scholar]
  51. Nadolny, J., Bongiovanni, A., Cepa, J., et al. 2021, A&A, 647, A89 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5 [Google Scholar]
  53. Odewahn, S. C., Windhorst, R. A., Driver, S. P., & Keel, W. C. 1996, ApJ, 472, L13 [NASA ADS] [CrossRef] [Google Scholar]
  54. Padilla, C., Castander, F. J., Alarcón, A., et al. 2019, AJ, 157, 246 [NASA ADS] [CrossRef] [Google Scholar]
  55. Pintos-Castro, I., Pović, M., Sánchez-Portal, M., et al. 2016, A&A, 592, A108 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Platt, J. 1999, Advances in Large Margin Classifiers, 10, 61 [Google Scholar]
  57. Pourrahmani, M., Nayyeri, H., & Cooray, A. 2018, ApJ, 856, 68 [NASA ADS] [CrossRef] [Google Scholar]
  58. Pović, M., Sánchez-Portal, M., Pérez García, A. M., et al. 2012, A&A, 541, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Pović, M., Huertas-Company, M., Aguerri, J. A. L., et al. 2013, MNRAS, 435, 3444 [Google Scholar]
  60. Pović, M., Márquez, I., Masegosa, J., et al. 2015, MNRAS, 453, 1644 [Google Scholar]
  61. Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. 2019, in Advances in Neural Information Processing Systems, eds. H. Wallach, H. Larochelle, A. Beygelzimer, et al. (Curran Associates Inc.), 2019, 32 [Google Scholar]
  62. Raghuwanshi, B. S., & Shukla, S. 2020, Knowl.-Based Syst., 187 [Google Scholar]
  63. Raihan, S. F., Schrabback, T., Hildebrandt, H., Applegate, D., & Mahler, G. 2020, MNRAS, 497, 1404 [NASA ADS] [CrossRef] [Google Scholar]
  64. Salvato, M., Ilbert, O., & Hoyle, B. 2019, Nat. Astron., 3, 212 [NASA ADS] [CrossRef] [Google Scholar]
  65. Serra-Ricart, M., Calbet, X., Garrido, L., & Gaitan, V. 1993, AJ, 106, 1685 [NASA ADS] [CrossRef] [Google Scholar]
  66. Serra-Ricart, M., Gaitan, V., Garrido, L., & Perez-Fournon, I. 1996, A&AS, 115, 195 [NASA ADS] [Google Scholar]
  67. Simmons, B. D., Lintott, C., Willett, K. W., et al. 2017, MNRAS, 464, 4420 [Google Scholar]
  68. Singal, J., Shmakova, M., Gerke, B., Griffith, R. L., & Lotz, J. 2011, PASP, 123, 615 [NASA ADS] [CrossRef] [Google Scholar]
  69. Strateva, I., et al. 2001, AJ, 122, 1861 [CrossRef] [Google Scholar]
  70. Tagliaferri, R., Longo, G., Andreon, S., et al. 2003, Lecture Notes Comput. Sci., 2859, 226 [NASA ADS] [CrossRef] [Google Scholar]
  71. Tuccillo, D., González-Serrano, J. I., & Benn, C. R. 2015, MNRAS, 449, 2818 [NASA ADS] [CrossRef] [Google Scholar]
  72. Tuccillo, D., Huertas-Company, M., Decencière, E., et al. 2018, MNRAS, 475, 894 [NASA ADS] [CrossRef] [Google Scholar]
  73. Vanzella, E., Cristiani, S., Fontana, A., et al. 2004, A&A, 423, 761 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Vika, M., Vulcani, B., Bamford, S. P., Häußler, B., & Rojas, A. L. 2015, A&A, 577, A97 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Wadadekar, Y. 2005, PASP, 117, 79 [NASA ADS] [CrossRef] [Google Scholar]
  76. Willett, K. W., Lintott, C. J., Bamford, S. P., et al. 2013, MNRAS, 435, 2835 [Google Scholar]
  77. Willett, K. W., Galloway, M. A., Bamford, S. P., et al. 2017, MNRAS, 464, 4176 [NASA ADS] [CrossRef] [Google Scholar]
  78. Wilson, D., Nayyeri, H., Cooray, A., & Häußler, B. 2020, ApJ, 888, 83 [NASA ADS] [CrossRef] [Google Scholar]
  79. Youden, W. J. 1950, Cancer, 3, 32 [Google Scholar]
  80. Zadrozny, B., & Elkan, C. 2002, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 694 [CrossRef] [Google Scholar]
  81. Zhang, Y., Li, L., & Zhao, Y. 2009, MNRAS, 392, 233 [NASA ADS] [CrossRef] [Google Scholar]
  82. Zheng, X. Z., Hammer, F., Flores, H., Assémat, F., & Pelat, D. 2004, A&A, 421, 847 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Zou, Q., Xie, S., Lin, Z., Wu, M., & Ju, Y. 2016, Big Data Res., 5, 2 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.