Free Access
Issue
A&A
Volume 651, July 2021
Article Number A108
Number of page(s) 17
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/202040219
Published online 27 July 2021
  1. Alonso-Herrero, A., Pérez-González, P. G., Alexander, D. M., et al. 2006, ApJ, 640, 167 [Google Scholar]
  2. Antonucci, R. 1993, ARA&A, 31, 473 [Google Scholar]
  3. Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540 [Google Scholar]
  4. Arnouts, S., & Ilbert, O. 2011, LePHARE: Photometric Analysis for Redshift Estimate [Google Scholar]
  5. Assef, R. J., Stern, D., Kochanek, C. S., et al. 2013, ApJ, 772, 26 [Google Scholar]
  6. Assef, R. J., Eisenhardt, P. R. M., Stern, D., et al. 2015, ApJ, 804, 27 [Google Scholar]
  7. Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5 [Google Scholar]
  8. Banerji, M., McMahon, R. G., Hewett, P. C., et al. 2012, MNRAS, 427, 2275 [Google Scholar]
  9. Banerji, M., Jouvel, S., Lin, H., et al. 2015, MNRAS, 446, 2523 [Google Scholar]
  10. Barden, S. C., Armandroff, T., Massey, P., et al. 1993, ASPCS, 37, 185 [Google Scholar]
  11. Barrufet de Soto, L., White, G. J., Pearson, C., et al. 2017, Publ. Korean Astron. Soc., 32, 271 [Google Scholar]
  12. Barrufet, L., Pearson, C., Serjeant, S., et al. 2020, A&A, 641, A129 [EDP Sciences] [Google Scholar]
  13. Berkson, J. 1944, J. Am. Stat. Assoc., 39, 357 [Google Scholar]
  14. Bishop, C. M. 2006, Pattern Recognition and Machine Learning Information Science and Statistics (Berlin, Heidelberg: Springer-Verlag) [Google Scholar]
  15. Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Breiman, L. 2001, Mach. Learn., 45, 32 [Google Scholar]
  17. Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. 1984, Classification and Regression Trees (Wadsworth) [Google Scholar]
  18. Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 [Google Scholar]
  19. Buat, V., Oi, N., Heinis, S., et al. 2015, A&A, 577, A141 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Burgarella, D., Buat, V., & Iglesias-Páramo, J. 2005, MNRAS, 360, 1413 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Burgarella, D., Mazyed, F., Oi, N., et al. 2019, PASJ, 71, 12 [Google Scholar]
  22. Cepa, J., Aguiar, M., Escalera, V. G., et al. 2000, SPIE Conf. Ser., 4008, 623 [Google Scholar]
  23. Chabrier, G. 2003, PASP, 115, 763 [Google Scholar]
  24. Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718 [Google Scholar]
  25. Charlton, P. J. L., Ruan, J. J., Haggard, D., et al. 2019, ApJ, 876, 75 [Google Scholar]
  26. Chen, B. H., Goto, T., Kim, S. J., et al. 2020, MNRAS, staa3865 [Google Scholar]
  27. Chen, T., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16 (New York, NY, USA: Association for Computing Machinery), 785 [Google Scholar]
  28. Ciesla, L., Charmandaris, V., Georgakakis, A., et al. 2015, A&A, 576, A10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Claeskens, J. F., Smette, A., Vandenbulcke, L., & Surdej, J. 2006, MNRAS, 367, 879 [Google Scholar]
  30. Cortes, C., & Vapnik, V. 1995, Mach. Learn., 20, 273 [Google Scholar]
  31. Dale, D. A., & Helou, G. 2002, ApJ, 576, 159 [Google Scholar]
  32. Dale, D. A., Helou, G., Magdis, G. E., et al. 2014, ApJ, 784, 83 [Google Scholar]
  33. de Grijp, M. H. K., Lub, J., & Miley, G. K. 1987, A&AS, 70, 95 [NASA ADS] [Google Scholar]
  34. Dodd, S. A., Law-Smith, J. A. P., Auchettl, K., Ramirez-Ruiz, E., & Foley, R. J. 2021, ApJ, 907, L21 [Google Scholar]
  35. Donley, J. L., Rieke, G. H., Alexander, D. M., Egami, E., & Pérez-González, P. G. 2010, ApJ, 719, 1393 [Google Scholar]
  36. Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 1 [Google Scholar]
  37. Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, SPIE Conf. Ser., 4841, 1657 [Google Scholar]
  38. Fabricant, D., Fata, R., Roll, J., et al. 2005, PASP, 117, 1411 [Google Scholar]
  39. Fadda, D., & Rodighiero, G. 2014, MNRAS, 444, L95 [Google Scholar]
  40. Fernández, A., García, S., Galar, M., et al. 2018, Learning from Imbalanced Data Sets (Springer) [Google Scholar]
  41. Francis, P. J., Nelson, B. O., & Cutri, R. M. 2004, AJ, 127, 646 [Google Scholar]
  42. Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, MNRAS, 366, 767 [Google Scholar]
  43. Geach, J. E., Dunlop, J. S., Halpern, M., et al. 2017, MNRAS, 465, 1789 [Google Scholar]
  44. Geurts, P., Ernst, D., & Wehenkel, L. 2006, Mach. Learn., 63, 42 [Google Scholar]
  45. Glikman, E., Helfand, D. J., White, R. L., et al. 2007, ApJ, 667, 673 [NASA ADS] [CrossRef] [Google Scholar]
  46. Glikman, E., Urrutia, T., Lacy, M., et al. 2012, ApJ, 757, 51 [Google Scholar]
  47. Glikman, E., Urrutia, T., Lacy, M., et al. 2013, ApJ, 778, 127 [Google Scholar]
  48. Goto, T., Toba, Y., Utsumi, Y., et al. 2017, Publ. Korean Astron. Soc., 32, 225 [Google Scholar]
  49. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [Google Scholar]
  50. Henry, J. P., Mullis, C. R., Voges, W., et al. 2006, ApJS, 162, 304 [Google Scholar]
  51. Hickox, R. C., Jones, C., Forman, W. R., et al. 2009, ApJ, 696, 891 [Google Scholar]
  52. Ho, S. C.-C., Goto, T., Oi, N., et al. 2021, MNRAS, 502, 140 [Google Scholar]
  53. Hosmer, D., Lemeshow, S., & Sturdivant, R. 2013, Applied Logistic Regression, 3rd edn. (Wiley) [Google Scholar]
  54. Huang, T.-C., Goto, T., Hashimoto, T., Oi, N., & Matsuhara, H. 2017, MNRAS, 471, 4239 [Google Scholar]
  55. Huang, T.-C., Matsuhara, H., Goto, T., et al. 2020, MNRAS, 498, 609 [Google Scholar]
  56. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  57. Hwang, N., Lee, M. G., Lee, H. M., et al. 2007, ApJS, 172, 583 [Google Scholar]
  58. Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
  60. Jarrett, T. H., Cohen, M., Masci, F., et al. 2011, ApJ, 735, 112 [Google Scholar]
  61. Jeon, Y., Im, M., Ibrahimov, M., et al. 2010, ApJS, 190, 166 [Google Scholar]
  62. Jeon, Y., Im, M., Kang, E., Lee, H. M., & Matsuhara, H. 2014, ApJS, 214, 20 [Google Scholar]
  63. Karouzos, M., & Im, M. AKARI-NEP Team 2012, Publ. Korean Astron. Soc., 27, 287 [Google Scholar]
  64. Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055 [Google Scholar]
  65. Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961 [Google Scholar]
  66. Kim, S. J., Lee, H. M., Matsuhara, H., et al. 2012, A&A, 548, A29 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Kim, S. J., Jeong, W.-S., Goto, T., et al. 2019, PASJ, 71, 11 [Google Scholar]
  68. Kim, S. J., Oi, N., Goto, T., et al. 2021, MNRAS, 500, 4078 [Google Scholar]
  69. Kimura, M., Maihara, T., Iwamuro, F., et al. 2010, PASJ, 62, 1135 [NASA ADS] [Google Scholar]
  70. Koenig, X. P., Leisawitz, D. T., Benford, D. J., et al. 2012, ApJ, 744, 130 [Google Scholar]
  71. Kouzuma, S., & Yamaoka, H. 2010, MNRAS, 405, 2062 [NASA ADS] [Google Scholar]
  72. Krumpe, M., Miyaji, T., Brunner, H., et al. 2015, MNRAS, 446, 911 [Google Scholar]
  73. LaMassa, S. M., Cales, S., Moran, E. C., et al. 2015, ApJ, 800, 144 [Google Scholar]
  74. Laureijs, R. J., Duvet, L., Escudero Sanz, I., et al. 2010, SPIE Conf. Ser., 7731, 77311H [Google Scholar]
  75. Lawrence, A. 2018, Nat. Astron., 2, 102 [Google Scholar]
  76. Lee, H. M., Im, M., Wada, T., et al. 2007, PASJ, 59, S529 [NASA ADS] [Google Scholar]
  77. Lee, H. M., Kim, S. J., Im, M., et al. 2009, PASJ, 61, 375 [NASA ADS] [Google Scholar]
  78. Lehmer, B. D., Xue, Y. Q., Brandt, W. N., et al. 2012, ApJ, 752, 46 [Google Scholar]
  79. Lin, C.-F., & Wang, S.-D. 2002, IEEE Trans. Neural Networks, 13, 464 [Google Scholar]
  80. Luo, B., Brandt, W. N., Xue, Y. Q., et al. 2017, ApJS, 228, 2 [Google Scholar]
  81. Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285 [Google Scholar]
  82. Małek, K., Solarz, A., Pollo, A., et al. 2013, A&A, 557, A16 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Małek, K., Buat, V., Roehlly, Y., et al. 2018, A&A, 620, A50 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  84. Malizia, A., Bassani, L., Bazzano, A., et al. 2012, MNRAS, 426, 1750 [Google Scholar]
  85. Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21 [Google Scholar]
  86. Marinucci, A., Bianchi, S., Nicastro, F., Matt, G., & Goulding, A. D. 2012, ApJ, 748, 130 [Google Scholar]
  87. Massey, F. J. 1951, J. Am. Stat. Assoc., 46, 68 [Google Scholar]
  88. Matsuhara, H., Wada, T., Matsuura, S., et al. 2006, PASJ, 58, 673 [NASA ADS] [Google Scholar]
  89. McGlynn, T. A., Suchkov, A. A., Winter, E. L., et al. 2004, ApJ, 616, 1284 [Google Scholar]
  90. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 56 [Google Scholar]
  91. Merloni, A., Bongiorno, A., Brusa, M., et al. 2014, MNRAS, 437, 3550 [Google Scholar]
  92. Miyazaki, S., Komiyama, Y., Nakaya, H., et al. 2012, Proc. SPIE, 8446, 327 [Google Scholar]
  93. Mountrichas, G., Buat, V., Yang, G., et al. 2021, A&A, 646, A29 [EDP Sciences] [Google Scholar]
  94. Murakami, H., Baba, H., Barthel, P., et al. 2007, PASJ, 59, S369 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  95. Nakoneczny, S., Bilicki, M., Solarz, A., et al. 2019, A&A, 624, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Nakoneczny, S. J., Bilicki, M., Pollo, A., et al. 2021, A&A, 649, A81 [EDP Sciences] [Google Scholar]
  97. Nayyeri, H., Ghotbi, N., Cooray, A., et al. 2018, ApJS, 234, 38 [Google Scholar]
  98. Netzer, H. 2015, ARA&A, 53, 365 [Google Scholar]
  99. Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  100. Oi, N., Goto, T., Matsuhara, H., et al. 2020, MNRAS, 500, 5024 [Google Scholar]
  101. Oi, N., Matsuhara, H., Murata, K., et al. 2014, A&A, 566, A60 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  102. Onaka, T., Matsuhara, H., Wada, T., et al. 2007, PASJ, 59, S401 [Google Scholar]
  103. Oyabu, S., Ishihara, D., Malkan, M., et al. 2011, A&A, 529, A122 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  104. Padovani, P., Alexander, D. M., Assef, R. J., et al. 2017, A&ARv., 25, 2 [Google Scholar]
  105. Pandas Development team, 2020, pandas-dev/pandas: Pandas [Google Scholar]
  106. Panessa, F., & Bassani, L. 2002, A&A, 394, 435 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  107. Pearson, C., Cheale, R., Serjeant, S., et al. 2017, Publ. Korean Astron. Soc., 32, 219 [Google Scholar]
  108. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  109. Poliszczuk, A., Solarz, A., Pollo, A., et al. 2019, PASJ, 71, 65 [Google Scholar]
  110. Probst, P., Wright, M. N., & Boulesteix, A.-L. 2019, WIREs Data Mining and Knowledge Discovery, 9, e1301 [Google Scholar]
  111. Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, AJ, 123, 2945 [Google Scholar]
  112. Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, ApJS, 180, 67 [Google Scholar]
  113. Richards, G. T., Myers, A. D., Peters, C. M., et al. 2015, ApJS, 219, 39 [Google Scholar]
  114. Richards, G. T., Nichol, R. C., Gray, A. G., et al. 2004, ApJS, 155, 257 [Google Scholar]
  115. Roseboom, I. G., Lawrence, A., Elvis, M., et al. 2013, MNRAS, 429, 1494 [Google Scholar]
  116. Rousseeuw, P. J., & Driessen, K. V. 1999, Technometrics, 41, 212 [Google Scholar]
  117. Sheng, Z., Wang, T., Jiang, N., et al. 2017, ApJ, 846, L7 [Google Scholar]
  118. Shi, Y., Rieke, G. H., Smith, P., et al. 2010, ApJ, 714, 115 [Google Scholar]
  119. Shim, H., Im, M., Ko, J., et al. 2013, ApJS, 207, 37 [Google Scholar]
  120. Shim, H., Kim, Y., Lee, D., et al. 2020, MNRAS, 498, 5065 [Google Scholar]
  121. Solarz, A., Pollo, A., Takeuchi, T. T., et al. 2015, A&A, 582, A58 [EDP Sciences] [Google Scholar]
  122. Stalevski, M., Fritz, J., Baes, M., Nakos, T., & Popović, L. Č. 2012, MNRAS, 420, 2756 [Google Scholar]
  123. Stalevski, M., Ricci, C., Ueda, Y., et al. 2016, MNRAS, 458, 2288 [Google Scholar]
  124. Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 163 [Google Scholar]
  125. Stern, D., Assef, R. J., Benford, D. J., et al. 2012, ApJ, 753, 30 [Google Scholar]
  126. Stern, D., McKernan, B., Graham, M. J., et al. 2018, ApJ, 864, 27 [Google Scholar]
  127. Stern, J., & Laor, A. 2012, MNRAS, 423, 600 [Google Scholar]
  128. Toba, Y., Goto, T., Oi, N., et al. 2020, ApJ, 899, 35 [Google Scholar]
  129. Tran, H. D. 2003, ApJ, 583, 632 [Google Scholar]
  130. Ting, K. M. 2002, IEEE Trans Knowledge Data Eng., 14, 659 [Google Scholar]
  131. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  132. Wada, T., Matsuhara, H., Oyabu, S., et al. 2008, PASJ, 60, S517 [Google Scholar]
  133. Wang, T.-W., Goto, T., Kim, S. J., et al. 2020, MNRAS, 499, 4068 [Google Scholar]
  134. Waskom, M., & The Seaborn Development Team 2020, mwaskom/seaborn [Google Scholar]
  135. Weisskopf, M. C., Tananbaum, H. D., Speybroeck, L. P. V., & O’Dell, S. L. 2000, Proc. SPIE, 4012, 2 [Google Scholar]
  136. White, G. J., Pearson, C., Braun, R., et al. 2010, A&A, 517, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  137. White, G. J., Barrufet de Soto, L., Pearson, C., et al. 2017, Publ. Korean Astron. Soc., 32, 231 [Google Scholar]
  138. Yang, G., Boquien, M., Buat, V., et al. 2020, MNRAS, 491, 740 [Google Scholar]
  139. York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579 [Google Scholar]
  140. Zakamska, N. L., Strauss, M. A., Krolik, J. H., et al. 2003, AJ, 126, 2125 [Google Scholar]
  141. Zakamska, N. L., Sun, A.-L., Strauss, M. A., et al. 2019, MNRAS, 489, 497 [Google Scholar]
  142. Zhang, Y., & Zhao, Y. 2004, A&A, 422, 1113 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.