Issue |
A&A
Volume 582, October 2015
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 12 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201423370 | |
Published online | 07 October 2015 |
Clustering of the AKARI NEP deep field 24 μm selected galaxies
1
Division of Particle and Astrophysical ScienceNagoya
University,
Furo-cho, Chikusa-ku, 464-8602
Nagoya,
Japan
e-mail:
aleksandra.solarz@ncbj.gov.pl
2
National Center for Nuclear Research, ul. Hoża 69,
00-681
Warsaw,
Poland
3
The Astronomical Observatory of the Jagiellonian
University, ul. Orla
171, 30-244
Kraków,
Poland
4
Institute of Space and Astronautical Science,
Japan Aerospace Exploration Agency, Sagamihara,
252-5210
Kanagawa,
Japan
5
Department of Physics and Astronomy, The Open
University, Walton
Hall, Milton
Keynes, MK7 6AA,
UK
6
Space Science and Technology Department, CCLRC Rutherford Appleton
Laboratory, Chilton,
Didcot, Oxfordshire
OX11 0QX,
UK
7
Institute for Astronomy, University of Hawaii,
2680 Woodlawn Drive,
Honolulu, HI
96822,
USA
8
National Astronomical Observatory, 2-21-1 Osawa, Mitaka, 181-8588
Tokyo,
Japan
9
Academia Sinica, Institute of Astronomy and
Astrophysics, 10617
Taipei,
Taiwan
10
Department of Physics, University of Lethbridge, 4401 University
Drive, Lethbridge,
Alberta
T1J 1B1,
Canada
11
Physics Section, Faculty of Humanities and Social Sciences, Iwate
University, 020-8550
Morioka,
Japan
12
Departament of Physics and Astronomy, University of
California, Los
Angeles, CA
90024,
USA
Received: 4 January 2014
Accepted: 4 August 2015
Aims. We present a method of selection of 24 μm galaxies from the AKARI north ecliptic pole (NEP) deep field down to 150 μJy and measurements of their two-point correlation function. We aim to associate various 24 μm selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution.
Methods. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter (r0) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions.
Results. We observe two different populations of star-forming galaxies, at zmed ~ 0.25, zmed ~ 0.9. Measurements of total infrared luminosities (LTIR) show that the sample at zmed ~ 0.25 is composed mostly of local star-forming galaxies, while the sample at zmed ~ 0.9 is composed of luminous infrared galaxies (LIRGs) with LTIR ~ 1011.62 L⊙. We find that dark halo mass is not necessarily correlated with the LTIR: for subsamples with LTIR = 1011.15 L⊙ at zmed ~ 0.7 we observe a higher clustering length (r0 = 6.21 ± 0.78[ h-1Mpc ]) than for a subsample with mean LTIR = 1011.84 L⊙ at zmed ~ 1.1 (r0 = 5.86 ± 0.69h-1Mpc). We find that galaxies at zmed ~ 0.9 can be ancestors of present day L∗ early type galaxies, which exhibit a very high r0 ~ 8h-1 Mpc.
Key words: infrared: galaxies / galaxies: statistics / galaxies: fundamental parameters
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.