Open Access
Issue
A&A
Volume 650, June 2021
Article Number A100
Number of page(s) 26
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202039435
Published online 11 June 2021
  1. Ackermann, M., Ajello, M., Albert, A., et al. 2012, ApJS, 203, 4 [NASA ADS] [CrossRef] [Google Scholar]
  2. Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071 [NASA ADS] [CrossRef] [Google Scholar]
  3. Beaumont, C. N., Williams, J. P., & Goodman, A. A. 2011, ApJ, 741, 14 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bengio, Y., Courville, A., & Vincent, P. 2013, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798 [CrossRef] [Google Scholar]
  5. Bianchi, L., Shiao, B., & Thilker, D. 2017, ApJS, 230, 24 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Springer) [Google Scholar]
  7. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. 2017, J. Am. Stat. Assoc., 112, 859 [CrossRef] [Google Scholar]
  8. Blome, H. J., Hoell, J., & Priester, W. 1997, Bergmann-Schäfer, Bd. 8: Sterne und Weltraum [Google Scholar]
  9. Cardoso, J.-F., Le Jeune, M., Delabrouille, J., Betoule, M., & Patanchon, G. 2008, IEEE J. Sel. Top. Signal Proc., 2, 735 [NASA ADS] [CrossRef] [Google Scholar]
  10. Cox, D. P. 2005, ARA&A, 43, 337 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. Delabrouille, J., Cardoso, J.-F., & Patanchon, G. 2003, MNRAS, 346, 1089 [Google Scholar]
  12. Dennison, B., Simonetti, J., & Topasna, G. 1999, BAAS, 31, 1455 [Google Scholar]
  13. Devroye, L. 1986, Non-uniform Random Variate Generation (Springer) [CrossRef] [Google Scholar]
  14. Doi, Y., Takita, S., Ootsubo, T., et al. 2015, PASJ, 67, 50 [NASA ADS] [Google Scholar]
  15. Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium [Google Scholar]
  16. Enßlin, T. A. 2019, Ann. Phys., 531, 1800127 [Google Scholar]
  17. Eriksen, H., Jewell, J., Dickinson, C., et al. 2008, ApJ, 676, 10 [NASA ADS] [CrossRef] [Google Scholar]
  18. Ewen, H. I., & Purcell, E. M. 1951, Nature, 168, 356 [NASA ADS] [CrossRef] [Google Scholar]
  19. Ferriere, K. M. 2001, Rev. Mod. Phys., 73, 1031 [NASA ADS] [CrossRef] [Google Scholar]
  20. Finkbeiner, D. P. 2003, ApJS, 146, 407 [Google Scholar]
  21. Fluke, C. J., & Jacobs, C. 2020, Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 10, e1349 [CrossRef] [Google Scholar]
  22. Freyberg, M. J. 1998, Astron. Nachr., 319, 93 [NASA ADS] [CrossRef] [Google Scholar]
  23. Freyberg, M. J., & Egger, R. 1999, Highlights in X-ray Astronomy, 272, 278 [Google Scholar]
  24. Gaustad, J. E., McCullough, P. R., Rosing, W., & Van Buren, D. 2001, PASP, 113, 1326 [NASA ADS] [CrossRef] [Google Scholar]
  25. Ginzburg, V. L., & Syrovatskii, S. 1965, ARA&A, 3, 297 [NASA ADS] [CrossRef] [Google Scholar]
  26. Gold, B., Odegard, N., Weiland, J. L., et al. 2011, ApJS, 192, 15 [Google Scholar]
  27. Goodfellow, I., Bengio, Y., & Courville, A. 2016, MIT Press, 521, 800 [Google Scholar]
  28. Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 [Google Scholar]
  29. Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1 [NASA ADS] [Google Scholar]
  30. HI4PI Collaboration (Ben Bekhti, N., et al.) 2016, A&A, 594, A116 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Hinton, G. E. 1990, Machine Learning (Elsevier), 555 [CrossRef] [Google Scholar]
  32. Hinton, G. E., & Salakhutdinov, R. R. 2006, Science, 313, 504 [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. Jaynes, E. T. 1982, Proc. IEEE, 70, 939 [NASA ADS] [CrossRef] [Google Scholar]
  34. Kahn, F. D. 1980, Highlights of Astronomy, 5, 365 [CrossRef] [Google Scholar]
  35. Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531 [NASA ADS] [CrossRef] [Google Scholar]
  36. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  37. Kingma, D. P., & Welling, M. 2013, ArXiv e-prints [arXiv:1312.6114] [Google Scholar]
  38. Kingma, D. P., & Welling, M. 2019, An Introduction to Variational Autoencoders [CrossRef] [Google Scholar]
  39. Klessen, R. S., & Glover, S. C. O. 2014, Physical Processes in the Interstellar Medium [Google Scholar]
  40. Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K. S., & Igel, C. 2017, IEEE Intell. Syst., 32, 16 [CrossRef] [Google Scholar]
  41. Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. 2016, International Conference on Machine Learning, PMLR, 1558 [Google Scholar]
  42. Leach, S. M., Cardoso, J.-F., Baccigalupi, C., et al. 2008, A&A, 491, 597 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Leike, R., & Enßlin, T. 2017, Entropy, 19, 402 [Google Scholar]
  44. Longo, G., Merényi, E., & Tiňo, P. 2019, PASP, 131, 100101 [Google Scholar]
  45. Madsen, G. J., Haffner, L. M., & Reynolds, R. J. 2001, The Wisconsin H-Alpha Mapper Northern Sky Survey of Galactic Ionized Hydrogen [Google Scholar]
  46. Mannheim, K., & Schlickeiser, R. 1994, A&A, 286, 983 [NASA ADS] [Google Scholar]
  47. Miville-Deschênes, M.-A., & Lagache, G. 2005, ApJS, 157, 302 [Google Scholar]
  48. Müller, A., Hackstein, M., Greiner, M., et al. 2018, A&A, 620, A64 [EDP Sciences] [Google Scholar]
  49. Murray, C., & Peek, J. E. 2019, Am. Astron. Soc. Meeting Abstracts, 233, 252.09 [Google Scholar]
  50. Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, ApJ, 278, L1 [Google Scholar]
  51. Planck Collaboration I. 2016, A&A, 594, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Planck Collaboration X. 2016, A&A, 594, A10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  53. Planck Collaboration I. 2020, A&A, 641, A1 [CrossRef] [EDP Sciences] [Google Scholar]
  54. Planck Collaboration IV. 2020, A&A, 641, A4 [CrossRef] [EDP Sciences] [Google Scholar]
  55. Portillo, S. K. N., Parejko, J. K., Vergara, J. R., & Connolly, A. J. 2020, AJ, 160, 45 [Google Scholar]
  56. Reich, W. 1982, A&AS, 48, 219 [NASA ADS] [Google Scholar]
  57. Reich, P., & Reich, W. 1986, A&AS, 63, 205 [NASA ADS] [Google Scholar]
  58. Reich, P., Testori, J. C., & Reich, W. 2001, A&A, 376, 861 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Reis, I., Rotman, M., Poznanski, D., Prochaska, J. X., & Wolf, L. 2019, Effectively Using Unsupervised Machine Learning in Next Generation Astronomical Surveys [Google Scholar]
  60. Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A., & Ghosh, T. 2015, MNRAS, 451, 4311 [Google Scholar]
  61. Rezende, D. J., Mohamed, S., & Wierstra, D. 2014, ArXiv e-prints [arXiv:1401.4082] [Google Scholar]
  62. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1985, Learning internal representationsby error propagation, Tech. rep., California Univ San Diego La Jolla Inst for Cognitive Science [Google Scholar]
  63. Sanders, W. T., Kraushaar, W. L., Nousek, J. A., & Fried, P. M. 1977, ApJ, 217, L87 [NASA ADS] [CrossRef] [Google Scholar]
  64. Scoville, N. Z., & Sanders, D. B. 1987, in Interstellar Processes, eds. D. J. Hollenbach, & H. A. Thronson (Dordrecht, Netherlands: Springer), 21 [Google Scholar]
  65. Selig, M., Vacca, V., Oppermann, N., & Enßlin, T. A. 2015, A&A, 581, A126 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  66. Snowden, S., Cox, D., McCammon, D., & Sanders, W. 1990, ApJ, 354, 211 [NASA ADS] [CrossRef] [Google Scholar]
  67. Snowden, S. L., Freyberg, M. J., Plucinsky, P. P., et al. 1995, ApJ, 454, 643 [NASA ADS] [CrossRef] [Google Scholar]
  68. Snowden, S. L., Egger, R., Freyberg, M. J., et al. 1997, ApJ, 485, 125 [NASA ADS] [CrossRef] [Google Scholar]
  69. Titsias, M., & Lázaro-Gredilla, M. 2014, International Conference on Machine Learning, 1971 [Google Scholar]
  70. Ucci, G., Ferrara, A., Gallerani, S., et al. 2018a, MNRAS, 483, 1295 [Google Scholar]
  71. Ucci, G., Ferrara, A., Pallottini, A., & Gallerani, S. 2018b, MNRAS, 477, 1484 [NASA ADS] [CrossRef] [Google Scholar]
  72. Zurada, J. M., Malinowski, A., & Cloete, I. 1994, Proceedings of IEEE International Symposium on Circuits and Systems-ISCAS’94 (IEEE), 6, 447 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.