Open Access
Issue
A&A
Volume 650, June 2021
Article Number A195
Number of page(s) 9
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202037709
Published online 30 June 2021
  1. Aggarwal, C. 2016, Outlier Analysis (Springer International Publishing) [Google Scholar]
  2. Aldering, G., Bailey, S., Lee, B. C., et al. 2005, ATel, 596, 1 [Google Scholar]
  3. Bakis, V., Burgaz, U., Butterley, T., et al. 2016, ATel, 9376 [Google Scholar]
  4. Baron, D., & Poznanski, D. 2017, MNRAS, 465, 4530 [Google Scholar]
  5. Bassett, B., Becker, A., Brewington, H., et al. 2006, Cent. Bur. Electron. Telegrams, 688, 1 [Google Scholar]
  6. Bessell, M. S. 1990, PASP, 102, 1181 [NASA ADS] [CrossRef] [Google Scholar]
  7. Blondin, S., Matheson, T., Kirshner, R. P., et al. 2012, AJ, 143, 126 [NASA ADS] [CrossRef] [Google Scholar]
  8. Cano, Z., Wang, S.-Q., Dai, Z.-G., & Wu, X.-F. 2017, Adv. Astron., 2017, 8929054 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chandola, V., Banerjee, A., & Kumar, V. 2009, ACM Comput. Surv., 41 [CrossRef] [Google Scholar]
  10. Contreras, C., Hamuy, M., Phillips, M. M., et al. 2010, AJ, 139, 519 [NASA ADS] [CrossRef] [Google Scholar]
  11. Cooke, J., Sullivan, M., Gal-Yam, A., et al. 2012, Nature, 491, 228 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  12. Das, S., Wong, W. K., Fern, A., Dietterich, T. G., & Amran Siddiqui, M. 2017, Workshop on Interactive Data Exploration and Analytics (IDEA’17), KDD workshop, [arXiv:1708.09441] [Google Scholar]
  13. Das, S., Rakibul Islam, M., Kannappan Jayakodi, N., & Rao Doppa, J. 2018, ArXiv e-prints [arXiv:1809.06477] [Google Scholar]
  14. DeBarr, D., & Wechsler, H. 2009, in Sixth Conference on Email and Anti-Spam. Mountain View, California, Citeseer, 1 [Google Scholar]
  15. Fan, W. K. G. 2012, in 2012 7th International Conference on Computer Science Education (ICCSE), 690 [Google Scholar]
  16. Folatelli, G., Morrell, N., Phillips, M. M., et al. 2013, ApJ, 773, 53 [NASA ADS] [CrossRef] [Google Scholar]
  17. Foley, R. J., Challis, P. J., Chornock, R., et al. 2013, ApJ, 767, 57 [NASA ADS] [CrossRef] [Google Scholar]
  18. Foley, R. J., Scolnic, D., Rest, A., et al. 2018, MNRAS, 475, 193 [Google Scholar]
  19. Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748 [NASA ADS] [CrossRef] [Google Scholar]
  20. Gal-Yam, A. 2012, Science, 337, 927 [Google Scholar]
  21. Giles, D., & Walkowicz, L. 2019, MNRAS, 484, 834 [Google Scholar]
  22. González-Gaitán, S., Hsiao, E. Y., Pignata, G., et al. 2014, ApJ, 795, 142 [NASA ADS] [CrossRef] [Google Scholar]
  23. Guillochon, J., Parrent, J., Kelley, L. Z., & Margutti, R. 2017, ApJ, 835, 64 [Google Scholar]
  24. Hoyle, B., Rau, M. M., Paech, K., et al. 2015, MNRAS, 452, 4183 [NASA ADS] [CrossRef] [Google Scholar]
  25. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  26. Ibrahim, N. M., & Zainal, A. 2019, Int. J. Swarm Intell. Res., 10, 53 [Google Scholar]
  27. Inserra, C., & Smartt, S. J. 2014, ApJ, 796, 87 [NASA ADS] [CrossRef] [Google Scholar]
  28. Ishida, E. E. O., Beck, R., González-Gaitán, S., et al. 2019, MNRAS, 483, 2 [NASA ADS] [CrossRef] [Google Scholar]
  29. Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python [Google Scholar]
  30. Kennamer, N., Ishida, E. E. O., Gonzalez-Gaitan, S., et al. 2020, ApJ, 902, 74 [Google Scholar]
  31. Kessler, R., Narayan, G., Avelino, A., et al. 2019, PASP, 131 [Google Scholar]
  32. Kranjc, J., Smailović, J., Podpečan, V., et al. 2015, Inf. Process. Manage., 51, 187 [Google Scholar]
  33. Krisciunas, K., Marion, G. H., Suntzeff, N. B., et al. 2009, AJ, 138, 1584 [NASA ADS] [CrossRef] [Google Scholar]
  34. Langer, N. 1991, A&A, 243, 155 [Google Scholar]
  35. Lisakov, S. M., Dessart, L., Hillier, D. J., Waldman, R., & Livne, E. 2018, MNRAS, 473, 3863 [NASA ADS] [CrossRef] [Google Scholar]
  36. Liu, Y. 2004, J. Chem. Inf. Comput. Sci., 44, 1936 [Google Scholar]
  37. Liu, F. T., Ting, K. M., & Zhou, Z. H. 2008, in 2008 Eighth IEEE International Conference on Data Mining (IEEE), 413 [Google Scholar]
  38. Loh, W.-Y. 2014, Int. Stat. Rev., 82, 329 [Google Scholar]
  39. Louppe, G. 2015, PhD Thesis, University of Liège [Google Scholar]
  40. Malanchev, K. L., Pruzhinskaya, M. V., Korolev, V. S., et al. 2021, MNRAS, 502, 5147 [Google Scholar]
  41. Manning, C. D., Raghavan, P., & Schutze, H. 2008, Introduction to Information Retrieval (Cambridge, UK: Cambridge University Press) [Google Scholar]
  42. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 56 [Google Scholar]
  43. Mehrotra, K. G., Mohan, C. K., & Huang, H. 2017, Anomaly Detection Principles and Algorithms, 1st edn. (Springer Publishing Company, Incorporated) [Google Scholar]
  44. Milisavljevic, D., & Margutti, R. 2018, Space Sci. Rev., 214, 68 [Google Scholar]
  45. Moriya, T. J., Sorokina, E. I., & Chevalier, R. A. 2018, Space Sci. Rev., 214, 59 [Google Scholar]
  46. Nakano, S., Sugano, M., Kadota, K., et al. 2013, Cent. Bur. Electron. Telegrams, 3440 [Google Scholar]
  47. Nun, I., Pichara, K., Protopapas, P., & Kim, D.-W. 2014, ApJ, 793, 23 [Google Scholar]
  48. Östman, L., Nordin, J., Goobar, A., et al. 2011, A&A, 526, A28 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Pastorello, A., Mattila, S., Zampieri, L., et al. 2008, MNRAS, 389, 113 [NASA ADS] [CrossRef] [Google Scholar]
  50. Pastorello, A., Hadjiyska, E., Rabinowitz, D., et al. 2015, MNRAS, 449, 1954 [NASA ADS] [CrossRef] [Google Scholar]
  51. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  52. Pruzhinskaya, M. V., Malanchev, K. L., Kornilov, M. V., et al. 2019, MNRAS, 489, 3591 [Google Scholar]
  53. Rebbapragada, U., Protopapas, P., Brodley, C. E., & Alcock, C. 2009, ArXiv e-prints [arXiv:0905.3428] [Google Scholar]
  54. Richards, J. W., Starr, D. L., Brink, H., et al. 2012, ApJ, 744, 192 [Google Scholar]
  55. Sako, M., Bassett, B., Becker, A. C., et al. 2018, PASP, 130 [Google Scholar]
  56. Sanders, N. E., Soderberg, A. M., Foley, R. J., et al. 2013, ApJ, 769, 39 [NASA ADS] [CrossRef] [Google Scholar]
  57. Settles, B. 2012, Active Learning (Morgan & Claypool Publishers) [Google Scholar]
  58. Smith, J. A., Tucker, D. L., Allam, S. S., et al. 2007, in The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ed. C. Sterken, et al., ASP Conf. Ser., 364, 91 [Google Scholar]
  59. Solorio, T., Fuentes, O., Terlevich, R., & Terlevich, E. 2005, MNRAS, 363, 543 [Google Scholar]
  60. Stritzinger, M. D., Phillips, M. M., Boldt, L. N., et al. 2011, AJ, 142, 156 [NASA ADS] [CrossRef] [Google Scholar]
  61. Taha, A., & Hadi, A. S. 2019, ACM Comput. Surv., 52 [Google Scholar]
  62. Taubenberger, S. 2017, in The Extremes of Thermonuclear Supernovae, eds. A. W. Alsabti, & P. Murdin, 317 [Google Scholar]
  63. The PLAsTiCC team (Allam, T. J., et al.) 2018, ArXiv e-prints [arXiv:1810.00001] [Google Scholar]
  64. Thompson, C. A., Califf, M. E., & Mooney, R. J. 1999, in ICML, Citeseer, 406 [Google Scholar]
  65. Tucker, D. L., Kent, S., Richmond, M. W., et al. 2006, Astron. Nachr., 327, 821 [Google Scholar]
  66. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  67. Vilalta, R., Ishida, E. E. O., Beck, R., et al. 2017, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI) [Google Scholar]
  68. Walmsley, M., Smith, L., Lintott, C., et al. 2020, MNRAS, 491, 1554 [Google Scholar]
  69. Wu, T., & Ortiz, J. 2019, in Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’19 (New York, NY, USA: Association for Computing Machinery), 380 [Google Scholar]
  70. Wyrzykowski, L., Leto, G., Altavilla, G., et al. 2016, ATel, 9507 [Google Scholar]
  71. Xia, X., Protopapas, P., & Doshi-Velez, F. 2016, Cost-Sensitive Batch Mode Active Learning: Designing Astronomical Observation by Optimizing Telescope Time and Telescope Choice, 477 [Google Scholar]
  72. Zhang, R., & Zou, Q. 2018, J. Phys.: Conf. Ser., 1061 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.