Free Access
Issue
A&A
Volume 648, April 2021
Article Number A122
Number of page(s) 14
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202038981
Published online 26 April 2021
  1. Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS, 203, 21 [Google Scholar]
  2. Ahumada, R., Prieto, C. A., & Almeida, A. 2020, ApJS, 249, 3 [Google Scholar]
  3. Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. 2015, ArXiv e-prints [arXiv:1503.05296] [Google Scholar]
  4. Alger, M. J., Banfield, J. K., Ong, C. S., et al. 2018, MNRAS, 478, 5547 [Google Scholar]
  5. Andrae, R., Melchior, P., & Bartelmann, M. 2010, A&A, 522, A21 [EDP Sciences] [Google Scholar]
  6. Aniyan, A. K., & Thorat, K. 2017, ApJS, 230, 20 [Google Scholar]
  7. Ball, N. M., & Brunner, R. J. 2010, Int. J. Mod. Phys. D, 19, 1049 [Google Scholar]
  8. Ball, N. M., Loveday, J., Fukugita, M., et al. 2004, MNRAS, 348, 1038 [Google Scholar]
  9. Balogh, M. L., Baldry, I. K., Nichol, R., et al. 2004, ApJ, 615, L101 [Google Scholar]
  10. Banerji, M., Lahav, O., Lintott, C. J., et al. 2010, MNRAS, 406, 342 [Google Scholar]
  11. Barchi, P. H., de Carvalho, R. R., Rosa, R. R., et al. 2020, Astron. Comput., 30 [Google Scholar]
  12. Beck, M. R., Scarlata, C., Fortson, L. F., et al. 2018, MNRAS, 476, 5516 [Google Scholar]
  13. Bekki, K., & Couch, W. J. 2010, MNRAS, 408, L11 [Google Scholar]
  14. Bieker, J. 2018, Am. Astron. Soc. Meet. Abstr., 232, 220.03 [Google Scholar]
  15. Bizyaev, D. V., Kautsch, S. J., Mosenkov, A. V., et al. 2014, ApJ, 787, 24 [Google Scholar]
  16. Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28 [Google Scholar]
  17. Bloom, J. S., Richards, J. W., Nugent, P. E., et al. 2012, PASP, 124, 1175 [Google Scholar]
  18. Breiman, L. 2001, in Machine Learning, ed. P. Flach, 5 [Google Scholar]
  19. Burkov, A. 2019, in The Hundred-Page Machine Learning Book, 152 [Google Scholar]
  20. Buta, R. J. 2011, ArXiv e-prints [arXiv:1102.0550] [Google Scholar]
  21. Cabrera-Vives, G., Miller, C. J., & Schneider, J. 2018, AJ, 156, 284 [Google Scholar]
  22. Calderon, V. F., & Berlind, A. A. 2019, MNRAS, 490, 2367 [Google Scholar]
  23. Cheng, T.-Y., Conselice, C. J., Aragón-Salamanca, A., et al. 2020, MNRAS, 493, 4209 [Google Scholar]
  24. Chilingarian, I. V., & Zolotukhin, I. Y. 2012, MNRAS, 419, 1727 [Google Scholar]
  25. Chilingarian, I. V., Melchior, A.-L., & Zolotukhin, I. Y. 2010, MNRAS, 405, 1409 [Google Scholar]
  26. Conselice, C. J., Bluck, A. F. L., Mortlock, A., Palamara, D., & Benson, A. J. 2014, MNRAS, 444, 1125 [Google Scholar]
  27. Cortes, C., & Vapnik, V. 1995, in Machine Learning, ed. P. Flach, 273 [Google Scholar]
  28. Davidge, T. J., McConnachie, A. W., Fardal, M. A., et al. 2012, ApJ, 751, 74 [Google Scholar]
  29. de la Calleja, J., & Fuentes, O. 2004, MNRAS, 349, 87 [Google Scholar]
  30. Dobrycheva, D., & Melnyk, O. 2012, Adv. Astron. Space Phys., 2, 42 [Google Scholar]
  31. Dobrycheva, D. V. 2013, Odessa Astron. Publ., 26, 187 [Google Scholar]
  32. Dobrycheva, D. V. 2017, Ph.D. Thesis, Main Astronomical Observatory, NAS of Ukraine [Google Scholar]
  33. Dobrycheva, D. V., Melnyk, O. V., Vavilova, I. B., & Elyiv, A. A. 2015, Astrophysics, 58, 168 [Google Scholar]
  34. Dobrycheva, D. V., Vavilova, I. B., Melnyk, O. V., & Elyiv, A. A. 2018, Kinematics Phys. Celestial Bodies, 34, 290 [Google Scholar]
  35. Du, W., Cheng, C., Wu, H., Zhu, M., & Wang, Y. 2019, MNRAS, 483, 1754 [Google Scholar]
  36. El Bouchefry, K., & de Souza, R. S. 2020, in Learning in Big Data: Introduction to Machine Learning, eds. P. Škoda, & F. Adam, 225 [Google Scholar]
  37. Elyiv, A. A., Melnyk, O. V., Vavilova, I. B., Dobrycheva, D. V., & Karachentseva, V. E. 2020, A&A, 635, A124 [EDP Sciences] [Google Scholar]
  38. Fluke, C. J., & Jacobs, C. 2020, WIREs Data Mining and Knowledge Discovery, 10 [Google Scholar]
  39. Gauthier, A., Jain, A., & Noordeh, E. 2016, AJ, 149, 1 [Google Scholar]
  40. Goto, T., Okamura, S., Sekiguchi, M., et al. 2003, PASJ, 55, 757 [Google Scholar]
  41. Grossi, M., di Serego Alighieri, S., Giovanardi, C., et al. 2009, A&A, 498, 407 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Ivezic, E. D., Babu, G. J., & Challenges, Statistical 2014, Astronomy, 1 [Google Scholar]
  43. Ivezic, Z., Connolly, A. J., VanderPlas, J. T., & Gray, A. 2014, in Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Data, eds. Z. Ivezic, A. J. Connolly, J. T. VanderPlas, & A. Gray, 559 [Google Scholar]
  44. Kaisin, S. S., Karachentsev, I. D., Hernandez-Toledo, H., Gutierrez, L., & Karachentseva, V. E. 2020, Astrophys. Bull., 75, 1 [Google Scholar]
  45. Karachentsev, I. D., Karachentseva, V. E., Kudrya, Y. N., Sharina, M. E., & Parnovskij, S. L. 1999, Bull. Spec. Astrophys. Obs., 47, 5 [Google Scholar]
  46. Karachentseva, V. E., & Vavilova, I. B. 1994, Bull. Spec. Astrophys. Obs., 37, 98 [NASA ADS] [Google Scholar]
  47. Karachentseva, V. E., & Vavilova, I. B. 1995, Kinematics Phys. Celestial Bodies, 11, 38 [Google Scholar]
  48. Kasivajhula, S., Raghavan, N., & Shah, H. 2007, MNRAS, 8, 1 [Google Scholar]
  49. Kates-Harbeck, J. 2012, APS April Meeting Abstracts, 2012, E1.075 [Google Scholar]
  50. Kautsch, S. J., Grebel, E. K., Barazza, F. D., & Gallagher, J. S. I. 2006, A&A, 445, 765 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Khramtsov, V., Dobrycheva, D., Vasylenko, M., et al. 2020, A&A, submitted [Google Scholar]
  52. Khramtsov, V., Sergeyev, A., Spiniello, C., et al. 2019a, A&A, 632, A56 [EDP Sciences] [Google Scholar]
  53. Khramtsov, V., Dobrycheva, D. V., Vasylenko, M. Y., & Akhmetov, V. S. 2019b, Odessa Astron. Publ., 32, 21 [Google Scholar]
  54. Kim, D.-W., & Bailer-Jones, C. A. L. 2016, A&A, 587, A18 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Kohler, S. 2018, Using Machine Learning to Find Planets (AAS Nova Highlights) [Google Scholar]
  56. Kremer, J., Stensbo-Smidt, K., Gieseke, F., Steenstrup Pedersen, K., & Igel, C. 2017, IEEE Intell. Syst., 32, 16 [Google Scholar]
  57. Kuminski, E., & Shamir, L. 2016, ApJS, 223, 20 [Google Scholar]
  58. Lahav, O., Naim, A., Sodre, L., & Storrie-Lombardi, M. C. 1995, MNRAS, 283, 207 [Google Scholar]
  59. Lahav, O., Naim, A., Sodré, L., Jr, & Storrie-Lombardi, M. C. 1996, MNRAS, 283, 207 [Google Scholar]
  60. Lingard, T. K., Masters, K. L., Krawczyk, C., et al. 2020, ApJ, 900, 178 [Google Scholar]
  61. Lintott, C. J., Schawinski, K., Slosar, A., et al. 2008, MNRAS, 389, 1179 [Google Scholar]
  62. Lisker, T., Grebel, E. K., & Binggeli, B. 2008, AJ, 135, 380 [Google Scholar]
  63. Lukic, V., Brüggen, M., Mingo, B., et al. 2019, MNRAS, 487, 1729 [Google Scholar]
  64. Mahabal, A., Rebbapragada, U., Walters, R., et al. 2019, PASP, 131 [Google Scholar]
  65. Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, A&A, 570, A13 [CrossRef] [EDP Sciences] [Google Scholar]
  66. Martin, G., Kaviraj, S., Hocking, A., Read, S. C., & Geach, J. E. 2020, MNRAS, 491, 1408 [Google Scholar]
  67. Melnyk, O. V., Dobrycheva, D. V., & Vavilova, I. B. 2012, Astrophysics, 55, 293 [Google Scholar]
  68. Miskolczi, A., Bomans, D. J., & Dettmar, R. J. 2011, A&A, 536, A66 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Mitronova, S. N., & Korotkova, G. G. 2015, Astrophys. Bull., 70, 24 [Google Scholar]
  70. Mittal, A., Soorya, A., Nagrath, P., & Hemanth, D. J. 2020, Earth Sci. Inform., 13, 601 [Google Scholar]
  71. Mu, Y.-H., Qiu, B., Zhang, J.-N., Ma, J.-C., & Fan, X.-D. 2020, Res. Astron. Astrophys., 20, 089 [Google Scholar]
  72. Murrugarra, J., & Hirata, N. 2017, SIBGRAPI2017 e-proceedings, 1 [Google Scholar]
  73. Naim, A., Lahav, O., Sodre, L. J., & Storrie-Lombardi, M. C. 1995, MNRAS, 275, 567 [Google Scholar]
  74. Nair, P. B., & Abraham, R. G. 2010, ApJS, 186, 427 [Google Scholar]
  75. Nyland, K., Young, L. M., Wrobel, J. M., et al. 2017, MNRAS, 464, 1029 [Google Scholar]
  76. Paturel, G., Fouque, P., Bottinelli, L., & Gouguenheim, L. 1989, A&AS, 80, 299 [Google Scholar]
  77. Paudel, S., Smith, R., Yoon, S. J., Calderón-Castillo, P., & Duc, P.-A. 2018, ApJS, 237, 36 [Google Scholar]
  78. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  79. Pilyugin, L. S., Grebel, E. K., Zinchenko, I. A., et al. 2018, A&A, 613, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  80. Rafieferantsoa, M., Andrianomena, S., & Davé, R. 2018, MNRAS, 479, 4509 [Google Scholar]
  81. Rahman, W. M. A., & Azhari, S. 2018, Int. J. Adv. Res. Sci. Eng. Technol., 5, 6066 [Google Scholar]
  82. Ralph, N. O., Norris, R. P., Fang, G., et al. 2019, PASP, 131 [Google Scholar]
  83. Raschka, S. 2015, in Python Machine Learning, ed. R. Banerjee, 1 [Google Scholar]
  84. Schawinski, K., Urry, C. M., Simmons, B. D., et al. 2014, MNRAS, 440, 889 [Google Scholar]
  85. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 [Google Scholar]
  86. Schommer, R. A., & Bothun, G. D. 1983, AJ, 88, 577 [Google Scholar]
  87. Simmons, B. D., Lintott, C., Willett, K. W., et al. 2017, MNRAS, 464, 4420 [Google Scholar]
  88. Sreejith, S., Pereverzyev, S. J., Kelvin, L. S., et al. 2018, MNRAS, 474, 5232 [Google Scholar]
  89. Stahl, B. E., Martínez-Palomera, J., Zheng, W., et al. 2020, MNRAS, 496, 3553 [Google Scholar]
  90. Storrie-Lombardi, M. C., Lahav, O., Sodre, L. J., & Storrie-Lombardi, L. J. 1992, MNRAS, 259, 8P [Google Scholar]
  91. Ucci, G., Ferrara, A., Gallerani, S., & Pallottini, A. 2017, MNRAS, 465, 1144 [Google Scholar]
  92. van den Bergh, S. 1991, PASP, 103, 390 [Google Scholar]
  93. VanderPlas, J. 2016, in Python Data Science Handbook: Essential Tools for Working with Data, ed. D. Schanafelt, 1563 [Google Scholar]
  94. VanderPlas, J., Connolly, A. J., Ivezic, Z., & Gray, A. 2012, Proceedings of Conference on Intelligent Data Understanding (CIDU), 47 [Google Scholar]
  95. Vasylenko, M. Y., Dobrycheva, D. V., Vavilova, I. B., Melnyk, O. V., & Elyiv, A. A. 2019, Odessa Astron. Publ., 32, 46 [Google Scholar]
  96. Vavilova, I. B., Melnyk, O. V., & Elyiv, A. A. 2009, Astron. Nachr., 330, 1004 [Google Scholar]
  97. Vavilova, I. B., Ivashchenko, G. Y., Babyk, I. V., et al. 2015, Kosmichna Nauka i Tekhnologiya, 21, 94 [Google Scholar]
  98. Vavilova, I. B., Elyiv, A. A., & Vasylenko, M. Y. 2018, Russ. Radio Phys. Radio Astron., 23, 244 [Google Scholar]
  99. Vavilova, I., Dobrycheva, D., Vasylenko, M., Elyiv, A., & Melnyk, O. 2020a, in Multiwavelength Extragalactic Surveys: Examples of Data Mining, eds. P. {\v{S}}koda, & F. Adam, 307 [Google Scholar]
  100. Vavilova, I., Pakuliak, L., & Babyk, I. 2020b, in Surveys, Catalogues, Databases, and Archives of Astronomical Data, ed. P. Škoda, & F. Adam, 57 [Google Scholar]
  101. Wagner, S., Melnik, V., & Rucker, H. 2019, in EPSC-DPS Joint Meeting 2019, 2019 EPSC-DPS2019-751 [Google Scholar]
  102. Wang, S., Cao, J., & Yu, P. S. 2019, ArXiv e-prints [arXiv:1906.04928] [Google Scholar]
  103. Way, M. J., Scargle, J. D., Ali, K. M., & Srivastava, A. N. 2012, Advances in Machine Learning and Data Mining for Astronomy (Taylor& Francis Group: CRC Press) [Google Scholar]
  104. Willett, K. W., Lintott, C. J., Bamford, S. P., et al. 2013, MNRAS, 435, 2835 [Google Scholar]
  105. Yıldız, M. K., Peletier, R. F., Duc, P. A., & Serra, P. 2020, A&A, 636, A8 [EDP Sciences] [Google Scholar]
  106. York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ, 120, 1579 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.