Free Access
Issue
A&A
Volume 643, November 2020
Article Number A122
Number of page(s) 14
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/201936090
Published online 11 November 2020
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software available from tensorflow.org [Google Scholar]
  2. Alger, M. J., Banfield, J. K., Ong, C. S., et al. 2018, MNRAS, 478, 5547 [NASA ADS] [CrossRef] [Google Scholar]
  3. Alhassan, W., Taylor, A. R., & Vaccari, M. 2018, MNRAS, 480, 2085 [NASA ADS] [CrossRef] [Google Scholar]
  4. Aniyan, A. K., & Thorat, K. 2017, ApJS, 230, 20 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&AS, 143, 33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Bromová, P., Škoda, P., & Vážný, J. 2014, Int. J. Autom. Comput., 11, 265 [CrossRef] [Google Scholar]
  7. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. 2002, J. Artif. Intell. Res., 16, 321 [CrossRef] [Google Scholar]
  8. Chollet, F. 2015, Keras, https://keras.io Accessed: 2 July 2020 [Google Scholar]
  9. de la Calleja, J., Benitez, A., Medina, M. A., & Fuentes, O. 2011, 2011 International Conference of Soft Computing and Pattern Recognition, 435 [CrossRef] [Google Scholar]
  10. Demleitner, M., Neves, M. C., Rothmaier, F., & Wambsganss, J. 2014, Astron. Comput., 7–8, 27 [NASA ADS] [CrossRef] [Google Scholar]
  11. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., & Fischer, J. L. 2018, MNRAS, 476, 3661 [NASA ADS] [CrossRef] [Google Scholar]
  12. Fernique, P., Allen, M. G., Boch, T., et al. 2015, A&A, 578, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. George, D., & Huerta, E. A. 2018, Phys. Rev. D, 97, 044039 [CrossRef] [Google Scholar]
  14. Glorot, X., Bordes, A., & Bengio, Y. 2011, in 28th International Conference on Machine Learning, eds. L. Getoor, & T. Scheffer (New York, USA: ACM), 513 [Google Scholar]
  15. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press), http://www.deeplearningbook.org, Accessed: 2 July 2020 [Google Scholar]
  16. Gray, R. O., & Corbally, C. J. 2009, Stellar Spectral Classification (Princeton University Press) [Google Scholar]
  17. Gupta, K. D., Pampana, R., Vilalta, R., Ishida, E. E. O., & de Souza, R. S. 2016, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, 1 [Google Scholar]
  18. Hanuschik, R. W., Kozok, J. R., & Kaiser, D. 1988, A&A, 189, 147 [NASA ADS] [Google Scholar]
  19. Heiter, U. 2014, Air-to-vacuum conversion, http://www.astro.uu.se/valdwiki/Air-to-vacuum20conversion, Accessed: 2 July 2020 [Google Scholar]
  20. Hou, W., Luo, A.-L., Hu, J.-Y., et al. 2016, Res. Astron. Astrophys., 16, 138 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Ishida, E. E. O., Beck, R., González-Gaitán, S., et al. 2019a, MNRAS, 483, 2 [NASA ADS] [CrossRef] [Google Scholar]
  22. Ishida, E. E. O., Kornilov, M. V., Malanchev, K. L., et al. 2019b, Active Anomaly Detection for Time-domain Discoveries [Google Scholar]
  23. Kang, W., & Lee, S.-G. 2012, MNRAS, 425, 3162 [Google Scholar]
  24. Kingma, D. P., & Ba, J. 2015, in 3rd International Conference on Learning Representations, eds. Y. Bengio, & Y. LeCun [Google Scholar]
  25. Kogure, T., & Leung, K. C. 2007, in The Astrophysics of Emission-Line Stars (Springer), Astrophys. Space Sci. Libr., 342 [CrossRef] [Google Scholar]
  26. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, in Advances in Neural Information Processing Systems, eds. F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Curran Associates, Inc.), 25, 1097 [Google Scholar]
  27. Kurosawa, R., Harries, T. J., & Symington, N. H. 2006, MNRAS, 370, 580 [NASA ADS] [CrossRef] [Google Scholar]
  28. LeCun, Y., Boser, B., Denker, J. S., et al. 1989, Neural Comput., 1, 541 [CrossRef] [Google Scholar]
  29. LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  30. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008, AJ, 136, 2022 [NASA ADS] [CrossRef] [Google Scholar]
  31. Lee, Y. S., Beers, T. C., Carlin, J. L., et al. 2015, AJ, 150, 187 [NASA ADS] [CrossRef] [Google Scholar]
  32. Lin, C.-C., Hou, J.-L., Chen, L., et al. 2015, Res. Astron. Astrophys., 15, 1325 [CrossRef] [Google Scholar]
  33. Liu, P., Zhang, H., & Eom, K. B. 2017, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 712 [CrossRef] [Google Scholar]
  34. Luo, A.-L., Zhao, Y.-H., Zhao, G., et al. 2015, Res. Astron. Astrophys., 15, 1095 [NASA ADS] [CrossRef] [Google Scholar]
  35. Luo, A. L., Zhao, Y. H., Zhao, G., et al. 2016, VizieR Online Data Catalog: V/149 [Google Scholar]
  36. Lyon, R. J., Stappers, B. W., Cooper, S., Brooke, J. M., & Knowles, J. D. 2016, MNRAS, 459, 1104 [NASA ADS] [CrossRef] [Google Scholar]
  37. Nandrekar-Heinis, D., Michel, L., Louys, M., & Bonnarel, F. 2014, Astron. Comput., 7–8, 37 [CrossRef] [Google Scholar]
  38. Pan, S. J., & Yang, Q. 2010, IEEE Trans. Knowl. Data Eng., 22, 1345 [Google Scholar]
  39. Parimucha, V., & Škoda, P. 2006, in Binary Stars as Critical Tools& Tests in Contemporary Astrophysics, eds. W. I. Hartkopf, E. F. Guinan, & P. Harmanec (Cambridge University Press), Proc. IAU Symp., 240, 486 [Google Scholar]
  40. Podsztavek, O. 2017, Bachelors Thesis, Czech Technical University in Prague, Faculty of Information Technology, https://dspace.cvut.cz/handle/10467/69666?locale-attribute=en, Accessed: 2 July 2020 [Google Scholar]
  41. Porter, J. M., & Rivinius, T. 2003, PASP, 115, 1153 [Google Scholar]
  42. Prati, R. C., Batista, G. E., & Monard, M. C. 2009, 4th Indian International Conference on Artificial Intelligence, 359 [Google Scholar]
  43. Rastgoo, M., Lemaitre, G., Massich, J., et al. 2016, 3rd International Conference on Bioimaging [Google Scholar]
  44. Reipurth, B., Pedrosa, A., & Lago, M. T. V. T. 1996, A&A, 120, 229 [Google Scholar]
  45. Richards, J. W., Starr, D. L., Brink, H., et al. 2012, ApJ, 744, 192 [NASA ADS] [CrossRef] [Google Scholar]
  46. Russakovsky, O., Deng, J., Su, H., et al. 2015, Int. J. Comput. Vision, 115, 211 [Google Scholar]
  47. Settles, B. 2009, Active Learning Literature Survet, Computer Sciences Technical Report 1648 (Madison: University of Wisconsin) [Google Scholar]
  48. Silaj, J., Jones, C. E., Tycner, C., Sigut, T. A. A., & Smith, A. D. 2010, ApJS, 187, 228 [NASA ADS] [CrossRef] [Google Scholar]
  49. Simonyan, K., & Zisserman, A. 2015, in 3rd International Conference on Learning Representations, eds. Y. Bengio, & Y. LeCun [Google Scholar]
  50. Škoda, P. 2019, https://doi.org/10.5281/zenodo.3242658 [Google Scholar]
  51. Škoda, P., & Šlechta, M. 2002, Publ. Astron. Inst. Czech. Acad. Sci., 90, 22 [Google Scholar]
  52. Škoda, P., & Vážný, J. 2012, ASP Conf. Ser., 461, 573 [Google Scholar]
  53. Škoda, P., Draper, P. W., Neves, M. C., Andrešič, D., & Jenness, T. 2014, Astron. Comput., 7–8, 108 [Google Scholar]
  54. Škoda, P., Bromová, P., Lopatovský, L., Palička, A., & Vážný, J. 2015, ASP Conf. Ser., 495, 87 [Google Scholar]
  55. Škoda, P., Palička, A., Koza, J., & Shakurova, K. 2016, Proc. IAU Symp., 325, 180 [Google Scholar]
  56. Škoda, P., Podsztavek, O., & Tvrdík, P. 2019, https://doi.org/10.5281/zenodo.3241520 [Google Scholar]
  57. Solorio, T., Fuentes, O., Terlevich, R., & Terlevich, E. 2005, MNRAS, 363, 543 [CrossRef] [Google Scholar]
  58. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929 [Google Scholar]
  59. Taigman, Y., Polyak, A., & Wolf, L. 2017, 5th International Conference on Learning Representations OpenReview.net [Google Scholar]
  60. Taylor, M. B. 2005, ASP Conf. Ser., 347, 29 [Google Scholar]
  61. Taylor, M. B., Boch, T., & Taylor, J. 2015, Astron. Comput., 11, 81 [CrossRef] [Google Scholar]
  62. Tody, D., Dolensky, M., McDowell, J., et al. 2012, Simple Spectral Access Protocol Version 1.1, IVOA Recommendation 10 February 2012 [Google Scholar]
  63. Traven, G., Zwitter, T., Van Eck, S., et al. 2015, A&A, 581, A52 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. van der Marel, R. P., & Guhathakurta, P. 2008, ApJ, 678, 187 [NASA ADS] [CrossRef] [Google Scholar]
  65. Vilalta, R., Gupta, K. D., Boumber, D., & Meskhi, M. M. 2019, PASP, 131 [Google Scholar]
  66. Walborn, N. R., & Fitzpatrick, E. L. 2000, PASP, 112, 50 [NASA ADS] [CrossRef] [Google Scholar]
  67. Waters, C. Z., & Hollek, J. K. 2013, PASP, 125, 1164 [NASA ADS] [CrossRef] [Google Scholar]
  68. Wu, Y., Luo, A.-L., Li, H.-N., et al. 2011, Res. Astron. Astrophys., 11, 924 [NASA ADS] [CrossRef] [Google Scholar]
  69. Yang, L., MacEachren, A., Mitra, P., & Onorati, T. 2018, ISPRS Int. J. Geo-Inf., 7 [Google Scholar]
  70. Zeiler, M. D., & Fergus, R. 2014, in Computer Vision - ECCV 2014, eds. D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Cham: Springer International Publishing), 818 [CrossRef] [Google Scholar]
  71. Zheng, Z., Carlin, J. L., Beers, T. C., et al. 2014, ApJ, 785, L23 [NASA ADS] [CrossRef] [Google Scholar]
  72. Zickgraf, F.-J. 2003, A&A, 408, 257 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.