Free Access
Issue
A&A
Volume 619, November 2018
Article Number A22
Number of page(s) 13
Section Stellar atmospheres
DOI https://doi.org/10.1051/0004-6361/201833016
Published online 01 November 2018
  1. Angelou, G. C., Bellinger, E. P., Hekker, S., & Basu, S. 2017, ApJ, 839, 116 [NASA ADS] [CrossRef] [Google Scholar]
  2. Armstrong, D. J., Kirk, J., Lam, K. W. F., et al. 2016, MNRAS, 456, 2260 [NASA ADS] [CrossRef] [Google Scholar]
  3. Asensio Ramos, A., & de la Cruz Rodríguez, J. 2015, A&A, 577, A140 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Asensio Ramos, A., & Petit, P. 2015, A&A, 583, A51 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Bellinger, E. P., Angelou, G. C., Hekker, S., et al. 2016, ApJ, 830, 31 [NASA ADS] [CrossRef] [Google Scholar]
  6. Carlin, B. P., & Louis, T. A. 2008, Bayesian Methods for Data Analysis (CRC Press) [Google Scholar]
  7. Carroll, T. A., & Strassmeier, K. G. 2014, A&A, 563, A56 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Castelli, F. 2005, Mem. Soc. Astron. It. Suppl., 8, 25 [Google Scholar]
  9. Castelli, F., & Kurucz, R. L. 2004, ArXiv e-prints [arXiv:astro-ph/0405087] [Google Scholar]
  10. Chang, C.-C., & Lin, C.-J. 2011, ACM Trans. Intell. Syst. Technol., 2, 27 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Davies, G. R., Silva Aguirre, V., Bedding, T. R., et al. 2016, MNRAS, 456, 2183 [NASA ADS] [CrossRef] [Google Scholar]
  12. Donati, J.-F., & Landstreet, J. D. 2009, ARA&A, 47, 333 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS, 291, 658 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Du, K.-L., & Swamy, M. 2014, Neural Networks and Statistical Learning (Springer), 15 [CrossRef] [Google Scholar]
  15. García-Floriano, A., López-Martín, C., Yáñez-Márquez, C., & Abran, A. 2018, Inf. Softw. Technol. [Google Scholar]
  16. Glantz, S. A., Slinker, B. K., & Neilands, T. B. 2016, Primer of Applied Regression & Analysis of Variance (McGraw-Hill Medical Publishing Division) [Google Scholar]
  17. Golub, G. H., & van Loan, C. F. 1996, Matrix Computations (Baltimore: Johns Hopkins University Press) [Google Scholar]
  18. Grunhut, J. H., Wade, G. A., Neiner, C., et al. 2017, MNRAS, 465, 2432 [NASA ADS] [CrossRef] [Google Scholar]
  19. Jefferies, J., Lites, B. W., & Skumanich, A. 1989, ApJ, 343, 920 [NASA ADS] [CrossRef] [Google Scholar]
  20. Kochukhov, O., Makaganiuk, V., & Piskunov, N. 2010, A&A, 524, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Marsden, S. C., Petit, P., Jeffers, S. V., et al. 2014, MNRAS, 444, 3517 [NASA ADS] [CrossRef] [Google Scholar]
  22. Mathys, G. 1989, Fundam. Cosmic Phys., 13, 143 [NASA ADS] [Google Scholar]
  23. Paletou, F. 2012, A&A, 544, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  25. Petit, P., Dintrans, B., Solanki, S. K., et al. 2008, MNRAS, 388, 80 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. Petit, P., Louge, T., Théado, S., et al. 2014, PASP, 126, 469 [NASA ADS] [CrossRef] [Google Scholar]
  27. Ramírez Vélez, J. C., Semel, M., Stift, M., et al. 2010, A&A, 512, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  28. Ramírez Vélez, J. C., Stift, M. J., Navarro, S. G., et al. 2016, A&A, 596, A62 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Rees, D. E., & Semel, M. D. 1979, A&A, 74, 1 [NASA ADS] [Google Scholar]
  30. Rees, D. E., López Ariste, A., Thatcher, J., & Semel, M. 2000, A&A, 355, 759 [NASA ADS] [Google Scholar]
  31. Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, ApJ, 733, 10 [NASA ADS] [CrossRef] [Google Scholar]
  32. Rosenblatt, F. 1958, Psychol. Rev., 65, 386 [CrossRef] [PubMed] [Google Scholar]
  33. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1985, Learning Internal Representations by Error Propagation, Tech. Rep., California Univ. San Diego La Jolla, Inst for Cognitive Science [CrossRef] [Google Scholar]
  34. Semel, M., & Li, J. 1996, Sol. Phys., 164, 417 [NASA ADS] [CrossRef] [Google Scholar]
  35. Semel, M., Rees, D. E., Ramírez Vélez, J. C., Stift, M. J., & Leone, F. 2006, in Solar Polarization 4, eds. Casini, R., & Lites, B. W., ASP Conf. Ser., 358, 355 [NASA ADS] [Google Scholar]
  36. Semel, M., Ramírez Vélez, J. C., Martínez González, M. J., et al. 2009, A&A, 504, 1003 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Sennhauser, C., & Berdyugina, S. V. 2010, A&A, 522, A57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  38. Sennhauser, C., Berdyugina, S. V., & Fluri, D. M. 2009, A&A, 507, 1711 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Stift, M. J. 1975, MNRAS, 172, 133 [NASA ADS] [CrossRef] [Google Scholar]
  40. Stift, M. J. 2000, Peculiar Newlett., 33, 27 [Google Scholar]
  41. Stift, M. J., Leone, F., & Cowley, C. R. 2012, MNRAS, 419, 2912 [NASA ADS] [CrossRef] [Google Scholar]
  42. Tan, P.-N., Steinbach, M., & Kumar, V. 2005, Introduction to Data Mining (Pearson Addison Wesley), 769 [Google Scholar]
  43. Valenti, J. A., & Fischer, D. A. 2005, ApJS, 159, 141 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  44. Vapnik, V. N. 1999, IEEE Trans. Neural Networks, 10, 988 [CrossRef] [PubMed] [Google Scholar]
  45. Verma, K., Hanasoge, S., Bhattacharya, J., Antia, H. M., & Krishnamurthi, G. 2016, MNRAS, 461, 4206 [NASA ADS] [CrossRef] [Google Scholar]
  46. Wade, G. A., Donati, J.-F., Landstreet, J. D., & Shorlin, S. L. S. 2000, MNRAS, 313, 823 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  47. Wade, G. A., Neiner, C., Alecian, E., et al. 2016, MNRAS, 456, 2 [NASA ADS] [CrossRef] [Google Scholar]
  48. Yang, Y., & Zou, H. 2015, Stat. Comput., 25, 1129 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.