Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A22 | |
Number of page(s) | 13 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201833016 | |
Published online | 01 November 2018 |
Using machine learning algorithms to measure stellar magnetic fields⋆
1
Instituto de Astronomía – Universidad Nacional Autónoma de México, Apdo. Postal 877, 22860 Ensenada, BC, Mexico
e-mail: jramirez@astro.unam.mx
2
Laboratorio de Cómputo Inteligente – Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, 07738 CDMX, Mexico
3
CUCEA, Universidad de Guadalajara, Periférico Norte 799, Los Belenes, 45100 Zapopan Jalisco, Mexico
Received:
13
March
2018
Accepted:
26
July
2018
Context. Regression methods based on machine learning algorithms (MLA) have become an important tool for data analysis in many different disciplines.
Aims. In this work, we use MLA in an astrophysical context; our goal is to measure the mean longitudinal magnetic field in stars (Heff) from polarized spectra of high resolution, through the inversion of the so-called multi-line profiles.
Methods. Using synthetic data, we tested the performance of our technique considering different noise levels: In an ideal scenario of noise-free multi-line profiles, the inversion results are excellent; however, the accuracy of the inversions diminish considerably when noise is taken into account. We therefore propose a data pre-process in order to reduce the noise impact, which consists of a denoising profile process combined with an iterative inversion methodology.
Results. Applying this data pre-process, we find a considerable improvement of the inversions results, allowing to estimate the errors associated to the measurements of stellar magnetic fields at different noise levels.
Conclusions. We have successfully applied our data analysis technique to two different stars, attaining for the first time the measurement of Heff from multi-line profiles beyond the condition of line autosimilarity assumed by other techniques.
Key words: magnetic fields / line: profiles / polarization / radiative transfer / methods: data analysis
The training data sets used here are available at www.astrosen.unam.mx/~julio/ML_mzs and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A22
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.