Free Access
Issue
A&A
Volume 616, August 2018
Article Number A97
Number of page(s) 21
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201833103
Published online 28 August 2018
  1. Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543 [NASA ADS] [CrossRef] [Google Scholar]
  2. Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS, 203, 21 [NASA ADS] [CrossRef] [Google Scholar]
  3. Aksoy, S., & Haralick, R. M. 2000, Pattern Recognit. Lett. 22, 563 [CrossRef] [Google Scholar]
  4. Athiwaratkun, B., & Kang, K. 2015, ArXiv e-prints [arXiv:1507.02313] [Google Scholar]
  5. Ball, N. M., Brunner, R. J., Myers, A. D., et al. 2008, ApJ, 683, 12 [NASA ADS] [CrossRef] [Google Scholar]
  6. Beck, R., Lin, Ishida, E., et al. 2017, Mon. Notes Astron. Soc. S. Afr., 468, 4323 [Google Scholar]
  7. Benavente, P., Protopapas, P., & Pichara, K. 2017, ApJ, 845 [Google Scholar]
  8. Berriman, G. B., Good, J. C., Laity, A. C., et al. 2004, ASP Conf. Ser., 314, 593 [NASA ADS] [Google Scholar]
  9. Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014, ApJS, 210, 9 [NASA ADS] [CrossRef] [Google Scholar]
  10. Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information Science and Statistics) (Secaucus, NJ: Springer-Verlag New York, Inc.) [Google Scholar]
  11. Bonnett, C., Troxel, M. A., Hartley, W., et al. 2016, Phys. Rev. D, 94, 042005 [NASA ADS] [CrossRef] [Google Scholar]
  12. Breiman, L. 1996, Mach. Learn. 24, 123 [Google Scholar]
  13. Breiman, L., Friedman, J., Olshen, R., & Stone, C. 1984, Classification and Regression Trees (Monterey, CA: Wadsworth and Brooks) [Google Scholar]
  14. Carliles, S., Budavári, T., Heinis, S., Priebe, C., & Szalay, A. S. 2010, ApJ, 712, 511 [NASA ADS] [CrossRef] [Google Scholar]
  15. Cavuoti, S., Brescia, M., D’Abrusco, R., Longo, G., & Paolillo, M. 2013a, MNRAS, 437, 968 [NASA ADS] [CrossRef] [Google Scholar]
  16. Cavuoti, S., Garofalo, M., Brescia, M., et al. 2013b, Smart Innov. Syst. Technol. 19, 29 [CrossRef] [Google Scholar]
  17. Cavuoti, S., Brescia, M., De Stefano, V., & Longo, G. 2015, Exp. Astron. 39, 45 [NASA ADS] [CrossRef] [Google Scholar]
  18. Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints [arXiv:1612.05560] [Google Scholar]
  19. de Jong, J. T. A., Verdoes Kleijn, G. A., Erben, T., et al. 2017, A&A, 604, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. D’Abrusco, R., Staiano, A., Longo, G., et al. 2007, ApJ, 663, 752 [NASA ADS] [CrossRef] [Google Scholar]
  21. D’Isanto, A., & Polsterer, K. L. 2018, A&A, 609, A111 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. D’Isanto, A., Cavuoti, S., Brescia, M., et al. 2016, MNRAS, 457, 3119 [NASA ADS] [CrossRef] [Google Scholar]
  23. Donalek, C., Arun Kumar, A., Djorgovski, S. G., et al. 2013, ArXiv e-prints [arXiv:1310.1976] [Google Scholar]
  24. Duda, R. O., Hart, P. E., & Stork, D. G. 2000, Pattern Classification, 2nd Edition (New York: Wiley-Interscience) [Google Scholar]
  25. Fernique, P., Allen, M. G., Boch, T., et al. 2015, A&A, 578, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Fix, E., & Hodges, J. L. 1951, in US Air Force School of Aviation Medicine, Technical Report 4, 477 [Google Scholar]
  27. Gieseke, F., Polsterer, K. L., Oancea, C. E., & Igel, C. 2014, in 22th European Symposium on Artificial Neural Networks, ESANN 2014 [Google Scholar]
  28. Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. 2005, Mon. Weather Rev. 133, 1098 [NASA ADS] [CrossRef] [Google Scholar]
  29. Guyon, I., & Elisseeff, A. 2003, J. Mach. Learn. Res., 3, 1157 [Google Scholar]
  30. Harnois-Déraps, J., Tröster, T., Chisari, N., et al. 2017, MNRAS, 471, 1619 [NASA ADS] [CrossRef] [Google Scholar]
  31. Heinermann, J., Kramer, O., Polsterer, K., & Gieseke, F. 2013, Lect. Notes Comput. Sci. Ser., 8077, 86 [CrossRef] [Google Scholar]
  32. Hersbach, H. 2000, Weather Forecasting, 15, 559 [Google Scholar]
  33. Hey, T., Tansley, S., & Tolle, K., eds. 2009, The Fourth Paradigm: Data-Intensive Scientific Discovery (Redmond, WA: Microsoft Research) [Google Scholar]
  34. Hildebrandt, H., Wolf, C., & Benítez, N. 2008, A&A, 480, 703 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Hildebrandt, H., Arnouts, S., Capak, P., et al. 2010, A&A, 523, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Hildebrandt, H., Viola, M., Heymans, C., et al. 2016, MNRAS, 465, 1 [Google Scholar]
  37. Hoyle, B. 2016, Astron. Comput. 16, 34 [NASA ADS] [CrossRef] [Google Scholar]
  38. Hoyle, B., Rau, M. M., Zitlau, R., Seitz, S., & Weller, J. 2015, MNRAS, 449, 1275 [NASA ADS] [CrossRef] [Google Scholar]
  39. Ivezić, v., Tyson, J. A., Acosta, E., et al. 2008, ArXiv e-prints [arXiv:0805.2366v4] [Google Scholar]
  40. Joudaki, S., Mead, A., Blake, C., et al. 2017, MNRAS, 471, 1259 [NASA ADS] [CrossRef] [Google Scholar]
  41. Kohavi, R. 1995, in Proceedings of the 14th International Joint Conference on Artificial Intelligence IJCAI’95 (San Francisco, USA: Morgan Kaufmann Publishers Inc.), 2, 1137 [Google Scholar]
  42. Köhlinger, F., Viola, M., Joachimi, B., et al. 2017, MNRAS, 471, 4412 [NASA ADS] [CrossRef] [Google Scholar]
  43. Krzywinski, M. I., Schein, J. E., Birol, I., et al. 2009, Genome Res., 19, 1639 [CrossRef] [PubMed] [Google Scholar]
  44. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  45. Laurino, O., D’Abrusco, R., Longo, G., & Riccio, G. 2011, MNRAS, 418, 2165 [NASA ADS] [CrossRef] [Google Scholar]
  46. Lupton, R. H., Gunn, J. E., & Szalay, A. S. 1999, AJ, 118, 1406 [NASA ADS] [CrossRef] [Google Scholar]
  47. Mahabal, A., Djorgovski, S. G., Turmon, M., et al. 2008, Astron. Nachr., 329, 288 [NASA ADS] [CrossRef] [Google Scholar]
  48. Mao, K. 2004, IEEE Trans. Syst. Man Cybern. Part B Cybern. 34, 629 [CrossRef] [Google Scholar]
  49. Norris, R. P., Hopkins, A. M., Afonso, J., et al. 2011, PASA, 28, 215 [NASA ADS] [CrossRef] [Google Scholar]
  50. Polsterer, K. L., Gieseke, F., Igel, C., & Goto, T. 2014, ASP Conf. Ser., 485, 425 [NASA ADS] [Google Scholar]
  51. Polsterer, K., Gieseke, F., & Igel, C. 2015, ASP Conf. Ser., 495, 81 [NASA ADS] [Google Scholar]
  52. Richards, G. T., Weinstein, M. A., Schneider, D. P., et al. 2001, AJ, 122, 1151 [NASA ADS] [CrossRef] [Google Scholar]
  53. Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, ApJS, 180, 67 [NASA ADS] [CrossRef] [Google Scholar]
  54. Rimoldini, L., Dubath, P., Süveges, M., et al. 2012, MNRAS, 427, 2917 [NASA ADS] [CrossRef] [Google Scholar]
  55. Smirnov, E., & Markov, A. 2017, MNRAS, 469, 2024 [NASA ADS] [CrossRef] [Google Scholar]
  56. Tangaro, S., Amoroso, N., Brescia, M., et al. 2015, Comput. Math. Methods Med. 2015 [CrossRef] [Google Scholar]
  57. Taylor, A. R. 2008, IAU Symp., 248, 164 [NASA ADS] [Google Scholar]
  58. Taylor, M. B. 2005, ASP Conf. Ser., 347, 29 [Google Scholar]
  59. The Theano Development Team, Al-Rfou, R., Alain, G., et al. 2016, ArXiv e-prints [arXiv:1605.02688] [Google Scholar]
  60. Tortora, C., La Barbera, F., Napolitano, N., et al. 2016, MNRAS, 457, 2845 [NASA ADS] [CrossRef] [Google Scholar]
  61. Vaccari, M., Covone, G., Radovich, M., et al. 2016, in Proceedings of the 4th Annual Conference on High Energy Astrophysics in Southern Africa (HEASA 2016), online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=275, id.26, 26 [Google Scholar]
  62. van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Wright, E. L. 2006, PASP, 118, 1711 [NASA ADS] [CrossRef] [Google Scholar]
  64. Zhang, Y., Ma, H., Peng, N., Zhao, Y., & Wu, X.-b. 2013, AJ, 146, 22 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.