Free Access
Issue
A&A
Volume 599, March 2017
Article Number A143
Number of page(s) 14
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201629719
Published online 16 March 2017
  1. Ankerst, M., Breunig, M. M., peter Kriegel, H., & Sander, J. 1999, in Optics: Ordering points to identify the clustering structure (ACM Press), 49 [Google Scholar]
  2. Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bullock, J. S., & Johnston, K. V. 2005, ApJ, 635, 931 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bullock, J. S., Kravtsov, A. V., & Weinberg, D. H. 2001, ApJ, 548, 33 [NASA ADS] [CrossRef] [Google Scholar]
  5. de Bruijne, J. 2012, Astrophys. Space Sci., 341, 31 [Google Scholar]
  6. de Bruijne, J., Perryman, M., Lindegren, L., et al. 2005, Gaia astrometic, photometirc, and radial velocity performance assessment methodologies to be used by the industrial system-level teams, Tech. Rep. (European Space Agency) [Google Scholar]
  7. Diemand, J., Kuhlen, M., & Madau, P. 2006, ApJ, 649, 1 [NASA ADS] [CrossRef] [Google Scholar]
  8. Elahi, P. J., Han, J., Lux, H., et al. 2013, MNRAS, 433, 1537 [NASA ADS] [CrossRef] [Google Scholar]
  9. Font, A. S., Johnston, K. V., Bullock, J. S., & Robertson, B. E. 2006a, ApJ, 638, 585 [Google Scholar]
  10. Font, A. S., Johnston, K. V., Bullock, J. S., & Robertson, B. E. 2006b, ApJ, 646, 886 [NASA ADS] [CrossRef] [Google Scholar]
  11. Helmi, A. 2008, A&ARv, 15, 145 [CrossRef] [Google Scholar]
  12. Hennig, C. 2007, Comput. Statist. Data Analysis, 52, 258 [CrossRef] [Google Scholar]
  13. Hofmans, J., Ceulemans, E., Steinley, D., & Van Mechelen, I. 2015, J. Classification, 32, 268 [CrossRef] [Google Scholar]
  14. Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194 [NASA ADS] [CrossRef] [Google Scholar]
  15. Ivezić, Ž., Monet, D. G., Bond, N., et al. 2008, in A Giant Step: from Milli- to Micro-arcsecond Astrometry, eds. W. J. Jin, I. Platais, & M. A. C. Perryman, IAU Symp., 248, 537 [Google Scholar]
  16. Johnston, K. V., Hernquist, L., & Bolte, M. 1996, ApJ, 465, 278 [NASA ADS] [CrossRef] [Google Scholar]
  17. Jordi, C., Gebran, M., Carrasco, J. M., et al. 2010, A&A, 523, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1 [NASA ADS] [CrossRef] [Google Scholar]
  19. Knebe, A., Knollmann, S. R., Muldrew, S. I., et al. 2011, MNRAS, 415, 2293 [NASA ADS] [CrossRef] [Google Scholar]
  20. Kriegel, H., & Pfeifle, M. 2005, in Proc. Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21–24, 672 [Google Scholar]
  21. Maciejewski, M., Colombi, S., Springel, V., Alard, C., & Bouchet, F. R. 2009, MNRAS, 396, 1329 [NASA ADS] [CrossRef] [Google Scholar]
  22. Mucha, H.-J., Bartel, H.-G., e. L. B., Krolak-Schwerdt, S., & Bøhmer, M. 2015, Resampling Techniques in Cluster Analysis: Is Subsampling Better Than Bootstrapping? (Berlin, Heidelberg: Springer Berlin Heidelberg), 113 [Google Scholar]
  23. Perryman, M. A. C. 2002, Ap&SS, 280, 1 [Google Scholar]
  24. Pfitzner, D. W., Salmon, J. K., & Sterling, T. 1997, Data Mining and Knowledge Discovery, 1, 419 [CrossRef] [Google Scholar]
  25. Robertson, B., Bullock, J. S., Font, A. S., Johnston, K. V., & Hernquist, L. 2005, ApJ, 632, 872 [NASA ADS] [CrossRef] [Google Scholar]
  26. Sander, J. o., Qin, X., Lu, Z., Niu, N., & Kovarsky, A. 2003, in Proc. 7th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD ’03 (Berlin, Heidelberg: Springer-Verlag), 75 [Google Scholar]
  27. Sharma, S., & Johnston, K. V. 2009, ApJ, 703, 1061 [NASA ADS] [CrossRef] [Google Scholar]
  28. Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS, 328, 726 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.