Free Access
Issue
A&A
Volume 546, October 2012
Article Number A13
Number of page(s) 8
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201219755
Published online 28 September 2012
  1. Abdalla, F. B., Banerji, M., Lahav, O., & Rashkov, V. 2011, MNRAS, 417, 1891 [NASA ADS] [CrossRef] [Google Scholar]
  2. Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, Report of the Dark Energy Task Force [arXiv:astro-ph/0609591] [Google Scholar]
  3. Bishop, C. M., Pattern Recognition and Machine Learning 2006 (Springer) [Google Scholar]
  4. Brescia, M., Cavuoti, S., D’Abrusco, R., Laurino, O., & Longo, G. 2011, V International Workshop on Distributed Cooperative Laboratories: Instrumenting the Grid, in Remote Instrumentation for eScience and Related Aspects, 2011, eds. F. Davoli, et al. (New York: Springer) [Google Scholar]
  5. Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., & Puzia, T. 2012a, MNRAS, 421, 1155 [NASA ADS] [CrossRef] [Google Scholar]
  6. Brescia, M., Longo, G., Castellani, M., et al. 2012b, Mem. SAIt Suppl., 19, 324 [Google Scholar]
  7. Broyden, C. G. 1970, J. Inst. Math. Appl., 6, 76 [CrossRef] [Google Scholar]
  8. Byrd, R. H., Nocedal, J., & Schnabel, R. B. 1994, Math. Progr., 63, 129 [CrossRef] [Google Scholar]
  9. Capak, P., Cowie, L. L., Hu, E. M., et al. 2004, AJ, 127, 180 [NASA ADS] [CrossRef] [Google Scholar]
  10. Capozzi, D., De Filippis, E., Paolillo, M., D’Abrusco, R., & Longo, G. 2009, MNRAS, 396, 900 [NASA ADS] [CrossRef] [Google Scholar]
  11. Carliles, S., Budavári, T., Heinis, S., Priebe, C., & Szalay, A. S. 2010, ApJ, 712, 511 [NASA ADS] [CrossRef] [Google Scholar]
  12. Collister, A. A., & Lahav, O. 2004, PASP, 116, 345 [NASA ADS] [CrossRef] [Google Scholar]
  13. Cowie, L. L., Barger, A. J., Hu, E. M., Capak, P., & Songaila, A. 2004, AJ, 127, 3137 [NASA ADS] [CrossRef] [Google Scholar]
  14. Csabai, I., Budavári, T., Connolly, A. J., et al. 2003, AJ, 125, 580 [NASA ADS] [CrossRef] [Google Scholar]
  15. D’Abrusco, R., Staiano, A., Longo, G., et al. 2007, ApJ, 663, 752 [NASA ADS] [CrossRef] [Google Scholar]
  16. Davidon, W. C. 1968, Comput. J., 10, 406 [CrossRef] [Google Scholar]
  17. Euclid Red Book, ESA Technical Document, 2011, ESA/SRE(2011)12 [arXiv:astro-ph/1110.3193] [Google Scholar]
  18. Fletcher, R. 1970, Comp. J., 13, 317 [CrossRef] [Google Scholar]
  19. Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93 [NASA ADS] [CrossRef] [Google Scholar]
  20. Geisser, S. 1975, J. Am. Statist. Assoc., 70, 320 [CrossRef] [Google Scholar]
  21. Goldfarb, D. 1970, Math. Comput., 24, 23 [CrossRef] [Google Scholar]
  22. Hildebrandt, H., Wolf, C., & Benitez, N. 2008, A&A, 480, 703 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Hildebrandt, H., Arnouts, S., Capak, P., Wolf, C., et al. 2010, A&A, 523, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Hogg, D. W., Cohen, J. G., Blandford, R., et al. 1998, ApJ, 115, 1418 [NASA ADS] [CrossRef] [Google Scholar]
  25. Huterer, D., Takada, M., Bernstein, G., & Jain, B. 2006, MNRAS 366, 101 [Google Scholar]
  26. Koo, D. C. 1999, ASP Conf. Ser., 191, 3, eds. Weymann, Storrie-Lombardi, Sawicki & Brunner [NASA ADS] [Google Scholar]
  27. Keiichi, U., Medezinski, E., Nonino, M., et al. 2012, ApJ, 755, 56 [NASA ADS] [CrossRef] [Google Scholar]
  28. Laurino, O., D’Abrusco, R., Longo, G., & Riccio, G. 2011, MNRAS, 418, 2165 [NASA ADS] [CrossRef] [Google Scholar]
  29. Le Févre, O., Vettolani, G., Paltani, S., et al. 2004, A&A, 428, 1043 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Li, I. H., & Yee, H. K. C. 2008, AJ, 135, 809 [NASA ADS] [CrossRef] [Google Scholar]
  31. Massarotti, M., Iovino, A., & Buzzoni, A. 2001a, A&A, 368, 74 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Massarotti, M., Iovino, A., Buzzoni, A., & Valls-Gabaud, D. 2001b, A&A, 380, 425 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  33. Mizutani, E., & Dreyfus, S. E. 2001, On complexity analysis of supervised MLP-learning for algorithmic comparisons. In Proceedings of the 14th INNS-IEEE International Joint Conference on Neural Networks (IJCNN) (Washington, DC, Jul.), 347, 352 [Google Scholar]
  34. Noll, S., Mehlert, D., Appenzeller, I., et al. 2004, A&A, 418, 885 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Peacock, J. A., Schneider, P., Efstathiou, G., et al. 2006, ESA-ESO Working Group on Fundamental Cosmology, Tech. Rep. [Google Scholar]
  36. Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M. 2006, ApJ, 653, 1004 [NASA ADS] [CrossRef] [Google Scholar]
  37. Shanno, D. F. 1970, Math. Comput., 24, 647 [CrossRef] [MathSciNet] [Google Scholar]
  38. Sylvain, A., & Celisse, A. 2010, A survey of cross-validation procedures for model selection, Statistics Surveys, 4, 40 [CrossRef] [Google Scholar]
  39. Treu, T., Ellis, R. S., Liao, T. X., & van Dokkum, P. G. 2005, ApJ, 633, 174 [NASA ADS] [CrossRef] [Google Scholar]
  40. Vashist, R., & Garg, M. L. 2012, A Rough Set Approach for Generation and Validation of Rules for Missing Attribute Values of a Data Set, IJCA (0975-8887), 42, 31, 35 [CrossRef] [Google Scholar]
  41. Wirth, G. D., Willmer, C. N. A., Amico, P., et al. 2004, AJ, 127, 3121 [NASA ADS] [CrossRef] [Google Scholar]
  42. Wolf, C. 2009, MNRAS, 397, 520 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.