EDP Sciences
Free Access
Issue
A&A
Volume 546, October 2012
Article Number A13
Number of page(s) 8
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201219755
Published online 28 September 2012
  • Abdalla, F. B., Banerji, M., Lahav, O., & Rashkov, V. 2011, MNRAS, 417, 1891 [NASA ADS] [CrossRef]
  • Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, Report of the Dark Energy Task Force [arXiv:astro-ph/0609591]
  • Bishop, C. M., Pattern Recognition and Machine Learning 2006 (Springer)
  • Brescia, M., Cavuoti, S., D’Abrusco, R., Laurino, O., & Longo, G. 2011, V International Workshop on Distributed Cooperative Laboratories: Instrumenting the Grid, in Remote Instrumentation for eScience and Related Aspects, 2011, eds. F. Davoli, et al. (New York: Springer)
  • Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., & Puzia, T. 2012a, MNRAS, 421, 1155 [NASA ADS] [CrossRef]
  • Brescia, M., Longo, G., Castellani, M., et al. 2012b, Mem. SAIt Suppl., 19, 324
  • Broyden, C. G. 1970, J. Inst. Math. Appl., 6, 76 [CrossRef]
  • Byrd, R. H., Nocedal, J., & Schnabel, R. B. 1994, Math. Progr., 63, 129 [CrossRef]
  • Capak, P., Cowie, L. L., Hu, E. M., et al. 2004, AJ, 127, 180 [NASA ADS] [CrossRef]
  • Capozzi, D., De Filippis, E., Paolillo, M., D’Abrusco, R., & Longo, G. 2009, MNRAS, 396, 900 [NASA ADS] [CrossRef]
  • Carliles, S., Budavári, T., Heinis, S., Priebe, C., & Szalay, A. S. 2010, ApJ, 712, 511 [NASA ADS] [CrossRef]
  • Collister, A. A., & Lahav, O. 2004, PASP, 116, 345 [NASA ADS] [CrossRef]
  • Cowie, L. L., Barger, A. J., Hu, E. M., Capak, P., & Songaila, A. 2004, AJ, 127, 3137 [NASA ADS] [CrossRef]
  • Csabai, I., Budavári, T., Connolly, A. J., et al. 2003, AJ, 125, 580 [NASA ADS] [CrossRef]
  • D’Abrusco, R., Staiano, A., Longo, G., et al. 2007, ApJ, 663, 752 [NASA ADS] [CrossRef]
  • Davidon, W. C. 1968, Comput. J., 10, 406 [CrossRef]
  • Euclid Red Book, ESA Technical Document, 2011, ESA/SRE(2011)12 [arXiv:astro-ph/1110.3193]
  • Fletcher, R. 1970, Comp. J., 13, 317 [CrossRef]
  • Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93 [NASA ADS] [CrossRef]
  • Geisser, S. 1975, J. Am. Statist. Assoc., 70, 320 [CrossRef]
  • Goldfarb, D. 1970, Math. Comput., 24, 23 [CrossRef]
  • Hildebrandt, H., Wolf, C., & Benitez, N. 2008, A&A, 480, 703 [NASA ADS] [CrossRef] [EDP Sciences]
  • Hildebrandt, H., Arnouts, S., Capak, P., Wolf, C., et al. 2010, A&A, 523, A31 [NASA ADS] [CrossRef] [EDP Sciences]
  • Hogg, D. W., Cohen, J. G., Blandford, R., et al. 1998, ApJ, 115, 1418 [NASA ADS] [CrossRef]
  • Huterer, D., Takada, M., Bernstein, G., & Jain, B. 2006, MNRAS 366, 101
  • Koo, D. C. 1999, ASP Conf. Ser., 191, 3, eds. Weymann, Storrie-Lombardi, Sawicki & Brunner [NASA ADS]
  • Keiichi, U., Medezinski, E., Nonino, M., et al. 2012, ApJ, 755, 56 [NASA ADS] [CrossRef]
  • Laurino, O., D’Abrusco, R., Longo, G., & Riccio, G. 2011, MNRAS, 418, 2165 [NASA ADS] [CrossRef]
  • Le Févre, O., Vettolani, G., Paltani, S., et al. 2004, A&A, 428, 1043 [NASA ADS] [CrossRef] [EDP Sciences]
  • Li, I. H., & Yee, H. K. C. 2008, AJ, 135, 809 [NASA ADS] [CrossRef]
  • Massarotti, M., Iovino, A., & Buzzoni, A. 2001a, A&A, 368, 74 [NASA ADS] [CrossRef] [EDP Sciences]
  • Massarotti, M., Iovino, A., Buzzoni, A., & Valls-Gabaud, D. 2001b, A&A, 380, 425 [NASA ADS] [CrossRef] [EDP Sciences]
  • Mizutani, E., & Dreyfus, S. E. 2001, On complexity analysis of supervised MLP-learning for algorithmic comparisons. In Proceedings of the 14th INNS-IEEE International Joint Conference on Neural Networks (IJCNN) (Washington, DC, Jul.), 347, 352
  • Noll, S., Mehlert, D., Appenzeller, I., et al. 2004, A&A, 418, 885 [NASA ADS] [CrossRef] [EDP Sciences]
  • Peacock, J. A., Schneider, P., Efstathiou, G., et al. 2006, ESA-ESO Working Group on Fundamental Cosmology, Tech. Rep.
  • Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M. 2006, ApJ, 653, 1004 [NASA ADS] [CrossRef]
  • Shanno, D. F. 1970, Math. Comput., 24, 647 [CrossRef] [MathSciNet]
  • Sylvain, A., & Celisse, A. 2010, A survey of cross-validation procedures for model selection, Statistics Surveys, 4, 40 [CrossRef]
  • Treu, T., Ellis, R. S., Liao, T. X., & van Dokkum, P. G. 2005, ApJ, 633, 174 [NASA ADS] [CrossRef]
  • Vashist, R., & Garg, M. L. 2012, A Rough Set Approach for Generation and Validation of Rules for Missing Attribute Values of a Data Set, IJCA (0975-8887), 42, 31, 35 [CrossRef]
  • Wirth, G. D., Willmer, C. N. A., Amico, P., et al. 2004, AJ, 127, 3121 [NASA ADS] [CrossRef]
  • Wolf, C. 2009, MNRAS, 397, 520 [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.