Open Access

Table I.1

Values of the systematic parameters for CHEOPS.

Background a bkg [ppm] 515 187 + 186 ${515}_{-{187}}^{+{186}}$ b bkg [ppm] 695 ± 96
Roll angle σGP [ppm] 107.3 5.8 + 6.4 ${107.3}_{-{5.8}}^{+{6.4}}$ ρGP [deg] 23.8 2.5 + 2.8 ${23.8}_{-{2.5}}^{+{2.8}}$
σw [ppm] f 0 c 1 [day−1]
Visit 01 120 30 + 26 ${120}_{-{30}}^{+{26}}$ {0.999843 ± 0.000054}
Visit 02 126 27 + 24 ${126}_{-{27}}^{+{24}}$ 0.999802 ± 0.000053
Visit 03 86 50 + 31 ${86}_{-{50}}^{+{31}}$ 0.999789 0.000052 + 0.000051 ${0.999789}_{-{0.000052}}^{+{0.000051}}$ 0.00067 0.00020 + 0.00021 ${0.00067}_{-{0.00020}}^{+{0.00021}}$
Visit 04 126 27 + 24 ${126}_{-{27}}^{+{24}}$ 0.999791 ± 0.000050
Visit 05 138 25 + 23 ${138}_{-{25}}^{+{23}}$ 0.999806 ± 0.000051
Visit 06 20 58 + 53 ${20}_{-{58}}^{+{53}}$ 0.999786 0.000051 + 0.000052 ${0.999786}_{-{0.000051}}^{+{0.000052}}$
Visit 07 90 43 + 29 ${90}_{-{43}}^{+{29}}$ 0.999778 0.000049 + 0.000050 ${0.999778}_{-{0.000049}}^{+{0.000050}}$
Visit 08 122 27 + 24 ${122}_{-{27}}^{+{24}}$ 0.999775 ± 0.000050
Visit 09 128 25 + 23 ${128}_{-{25}}^{+{23}}$ 0.999806 0.000050 + 0.000051 ${0.999806}_{-{0.000050}}^{+{0.000051}}$ 0.00088 0.00021 + 0.00022 ${-0.00088}_{-{0.00021}}^{+{0.00022}}$
Visit 10 71 65 + 39 ${71}_{-{65}}^{+{39}}$ 0.999741 0.000051 + 0.000050 ${0.999741}_{-{0.000051}}^{+{0.000050}}$
Visit 11 26 57 + 49 ${26}_{-{57}}^{+{49}}$ 0.999764 ± 0.000049
Visit 12 114 28 + 24 ${114}_{-{28}}^{+{24}}$ 0.999808 ± 0.000049
Visit 13 110 31 + 26 ${110}_{-{31}}^{+{26}}$ 0.999780 0.000050 + 0.000049 ${0.999780}_{-{0.000050}}^{+{0.000049}}$
Visit 14 49 65 + 46 ${49}_{-{65}}^{+{46}}$ 0.999777 0.000051 + 0.000050 ${0.999777}_{-{0.000051}}^{+{0.000050}}$
Visit 15 119 29 + 26 ${119}_{-{29}}^{+{26}}$ 1.000084 ± 0.000055
Visit 16 22 56 + 52 ${22}_{-{56}}^{+{52}}$ 0.999740 0.000051 + 0.000052 ${0.999740}_{-{0.000051}}^{+{0.000052}}$
Visit 17 87 50 + 31 ${87}_{-{50}}^{+{31}}$ 0.999772 ± 0.000051
Visit 18 101 33 + 26 ${101}_{-{33}}^{+{26}}$ 1.000101 ± 0.000051
Visit 19 101 33 + 26 ${101}_{-{33}}^{+{26}}$ 1.000062 ± 0.000050
Visit 20 110 23 + 20 ${110}_{-{23}}^{+{20}}$ 0.999665 ± 0.000049
Visit 21 145 ± 18 0.999678 0.000049 + 0.000050 ${0.999678}_{-{0.000049}}^{+{0.000050}}$
Visit 22 78 40 + 26 ${78}_{-{40}}^{+{26}}$ 0.999679 0.000049 + 0.000048 ${0.999679}_{-{0.000049}}^{+{0.000048}}$
Visit 23 87 47 + 30 ${87}_{-{47}}^{+{30}}$ 1.000013 0.000049 + 0.000050 ${1.000013}_{-{0.000049}}^{+{0.000050}}$
Visit 24 75 50 + 29 ${75}_{-{50}}^{+{29}}$ 0.999891 ± 0.000049
Visit 25 73 46 + 28 ${73}_{-{46}}^{+{28}}$ 0.999661 0.000050 + 0.000049 ${0.999661}_{-{0.000050}}^{+{0.000049}}$
Visit 26 100 23 + 20 ${100}_{-{23}}^{+{20}}$ 0.999664 ± 0.000049
Visit 27 94 38 + 27 ${94}_{-{38}}^{+{27}}$ 1.000069 ± 0.000049
Visit 28 145 22 + 21 ${145}_{-{22}}^{+{21}}$ 0.999895 0.000050 + 0.000051 ${0.999895}_{-{0.000050}}^{+{0.000051}}$
Visit 29 176 ± 17 0.999659 ± 0.000049
Visit 30 80 62 + 37 ${80}_{-{62}}^{+{37}}$ 0.999937 ± 0.000056
Visit 31 72 49 + 29 ${72}_{-{49}}^{+{29}}$ 0.999928 ± 0.000049 0.00037 ± 0.00012
Visit 32 35 56 + 43 ${35}_{-{56}}^{+{43}}$ 0.999888 ± 0.000050 0.00101 0.00014 + 0.00015 ${0.00101}_{-{0.00014}}^{+{0.00015}}$
Visit 33 100 14 + 13 ${100}_{-{14}}^{+{13}}$ 0.999643 ± 0.000048 0.00012 ± 0.00002
Visit 34 93 28 + 23 ${93}_{-{28}}^{+{23}}$ 0.999610 0.000049 + 0.000050 ${0.999610}_{-{0.000049}}^{+{0.000050}}$
Visit 35 64 65 + 38 ${64}_{-{65}}^{+{38}}$ 1.000089 0.000050 + 0.000051 ${1.000089}_{-{0.000050}}^{+{0.000051}}$ 0.00117 0.00020 + 0.00019 ${0.00117}_{-{0.00020}}^{+{0.00019}}$
Visit 36 47 57 + 37 ${47}_{-{57}}^{+{37}}$ 0.999669 0.000048 + 0.000049 ${0.999669}_{-{0.000048}}^{+{0.000049}}$
Visit 37 103 24 + 20 ${103}_{-{24}}^{+{20}}$ 0.999605 ± 0.000050

Notes. The background parameters a bkg and b bkg are the ones defined in Eq. 1. The roll-angle GP hyperparameters σGP and ρGP are the standard deviation of the process and the correlation scale in roll-angle unit (deg), respectively (see Section 4.1). The parameters σ w, f0 and c 1 are the additive noise jitter term, the flux normalisation factor and the flux linear slope, respectively. σw is expressed in parts-per-million (ppm) and is added to all error bars quadratically. A negative value of σ w means that the error bars are shrunk. Each f 0 value is fitted after the corresponding data set has been normalised by its median value (i.e. all flux values are close to 1 and without units). The linear slope c 1 is expressed in normalised flux units per day.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.