Open Access

Table 2.

Posterior distributions of the parameters of lens models.

SDP 81 SPT 0532−50 SPT 0538−50



PL PL+MP PL PL+MP PL PL+MP
xl 0 . 542 0.011 + 0.003 $ 0.542^{+0.003}_{-0.011} $ 0 . 560 0.003 + 0.003 $ 0.560^{+0.003}_{-0.003} $ 2 . 1043 0.0007 + 0.0003 $ 2.1043^{+0.0003}_{-0.0007} $ 2 . 1003 0.0003 + 0.0004 $ 2.1003^{+0.0004}_{-0.0003} $ 0 . 1896 0.0008 + 0.0008 $ 0.1896^{+0.0008}_{-0.0008} $ 0 . 1907 0.0026 + 0.0007 $ 0.1907^{+0.0007}_{-0.0026} $
yl 0 . 170 0.009 + 0.005 $ -0.170^{+0.005}_{-0.009} $ 0 . 149 0.004 + 0.003 $ -0.149^{+0.003}_{-0.004} $ 1 . 8706 0.0003 + 0.0001 $ 1.8706^{+0.0001}_{-0.0003} $ 1 . 8700 0.0003 + 0.0004 $ 1.8700^{+0.0004}_{-0.0003} $ 0 . 0277 0.0016 + 0.0009 $ -0.0277^{+0.0009}_{-0.0016} $ 0 . 0254 0.0011 + 0.0013 $ -0.0254^{+0.0013}_{-0.0011} $
RE 1 . 609 0.002 + 0.007 $ 1.609^{+0.007}_{-0.002} $ 1 . 611 0.002 + 0.003 $ 1.611^{+0.003}_{-0.002} $ 0 . 5420 0.0001 + 0.0001 $ 0.5420^{+0.0001}_{-0.0001} $ 0 . 5420 0.0002 + 0.0002 $ 0.5420^{+0.0002}_{-0.0002} $ 1 . 7237 0.0010 + 0.0003 $ 1.7237^{+0.0003}_{-0.0010} $ 1 . 7243 0.0004 + 0.0004 $ 1.7243^{+0.0004}_{-0.0004} $
q 0 . 794 0.031 + 0.010 $ 0.794^{+0.010}_{-0.031} $ 0 . 832 0.008 + 0.009 $ 0.832^{+0.009}_{-0.008} $ 0 . 816 0.008 + 0.005 $ 0.816^{+0.005}_{-0.008} $ 0 . 840 0.005 + 0.005 $ 0.840^{+0.005}_{-0.005} $ 0 . 894 0.003 + 0.008 $ 0.894^{+0.008}_{-0.003} $ 0 . 876 0.004 + 0.004 $ 0.876^{+0.004}_{-0.004} $
θq 12 2 + 4 $ 12^{+4}_{-2} $ 6 1 + 2 $ 6^{+2}_{-1} $ 28 . 3 0.3 + 1.3 $ 28.3^{+1.3}_{-0.3} $ 23 . 6 0.6 + 0.5 $ 23.6^{+0.5}_{-0.6} $ 152 1 + 1 $ 152^{+1}_{-1} $ 153 1 + 1 $ 153^{+1}_{-1} $
γ 1 . 97 0.13 + 0.04 $ 1.97^{+0.04}_{-0.13} $ 2 . 00 0.07 + 0.03 $ 2.00^{+0.03}_{-0.07} $ 2 . 19 0.03 + 0.04 $ 2.19^{+0.04}_{-0.03} $ 2 . 20 0.02 + 0.04 $ 2.20^{+0.04}_{-0.02} $ 2 . 22 0.06 + 0.03 $ 2.22^{+0.03}_{-0.06} $ 2 . 23 0.03 + 0.02 $ 2.23^{+0.02}_{-0.03} $
Γ 0 . 032 0.019 + 0.005 $ 0.032^{+0.005}_{-0.019} $ 0 . 037 0.007 + 0.004 $ 0.037^{+0.004}_{-0.007} $ 0 . 015 0.002 + 0.002 $ 0.015^{+0.002}_{-0.002} $ 0 . 022 0.001 + 0.003 $ 0.022^{+0.003}_{-0.001} $ 0 . 012 0.001 + 0.001 $ 0.012^{+0.001}_{-0.001} $ 0 . 011 0.001 + 0.001 $ 0.011^{+0.001}_{-0.001} $
θΓ 8 12 + 4 $ -8^{+4}_{-12} $ 8 2 + 2 $ 8^{+2}_{-2} $ 13 6 + 2 $ 13^{+2}_{-6} $ 26 1 + 1 $ 26^{+1}_{-1} $ 15 4 + 3 $ 15^{+3}_{-4} $ 19 2 + 2 $ 19^{+2}_{-2} $
A3 0 . 0018 0.0009 + 0.0009 $ 0.0018^{+0.0009}_{-0.0009} $ 0 . 0047 0.0004 + 0.0003 $ 0.0047^{+0.0003}_{-0.0004} $ 0 . 0078 0.0013 + 0.0006 $ -0.0078^{+0.0006}_{-0.0013} $
B3 0 . 0034 0.0007 + 0.0006 $ 0.0034^{+0.0006}_{-0.0007} $ 0 . 0019 0.0003 + 0.0003 $ -0.0019^{+0.0003}_{-0.0003} $ 0 . 0049 0.0009 + 0.0022 $ 0.0049^{+0.0022}_{-0.0009} $
A4 0 . 0032 0.0013 + 0.0015 $ -0.0032^{+0.0015}_{-0.0013} $ 0 . 0037 0.0007 + 0.0006 $ -0.0037^{+0.0006}_{-0.0007} $ 0 . 0033 0.0009 + 0.0012 $ -0.0033^{+0.0012}_{-0.0009} $
B4 0 . 0041 0.0014 + 0.0016 $ 0.0041^{+0.0016}_{-0.0014} $ 0 . 0060 0.0007 + 0.0007 $ -0.0060^{+0.0007}_{-0.0007} $ 0 . 0078 0.0021 + 0.0014 $ -0.0078^{+0.0014}_{-0.0021} $

𝒦 ≡0 28 ≡0 75 ≡0 120

Notes. The uncertainties given are the weighted 1st and 99th percentile ranges of the marginalised posterior sampling with MultiNest. Positions are given relative to the observation phase centre, given in Table 1. The Bayes factor (𝒦) is relative to the PL model. All angles are defined east of north.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.