Open Access

Table 8.

Light-curve fits with MOSF IT: models, parameters, priors and marginalised posteriors.

Parameter Prior Magnetar Magnetar + Magnetar + 56Ni Fallback CSM CSM + CSM + 56Ni
56Ni 56Ni 56Ni 56Ni (red)
(fixed κ’s) (fixed κ’s) (fixed κ’s) (fixed κ’s)
Fitted properties

General

Ejecta mass Mej (M) log𝒰(1,300) 83 ± 4 74 ± 5 34 ± 6
Explosion date texp (day) 𝒰(−200,0) −19 ± 3 −22 ± 2 −70 ± 5 −11 ± 2 −14 ± 2
γ-ray” opacity κγ (cm2 g−1) log𝒰(10−2,104) 0.013 ± 0.002 0.03 0.03 0.010 ± 0.001 ... 0.03 0.03
Optical opacity κ (cm2 g−1) 𝒰(0.01,0.2) 0.18 ± 0.02 0.05 ± 0.02 0.07 0.07 0.19 ± 0.01 ... 0.07 ± 0.01 0.07 0.07
Scaling velocity vscale (km s−1) 𝒰(1000,10 000) 4050 ± 130
White noise parameter σ log𝒰(10−3,100) 0.25 ± 0.01 0.21 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.23 ± 0.01

Magnetar model

Magnetic field B (1014 G) log𝒰(0.01,20) ... ... ... ... ... ...
Neutron-star mass MNS (M) 𝒰(1,2.2) 2.1 ± 0.1 ... ... ... ... ... ...
Initial spin period P0 (ms) 𝒰(1,20) ... ... ... ... ... ...

56Ni model

Nickel fraction fNi log𝒰(10−3,1) ... 0.6 ± 0.2 0.2 ± 0.1 0.50 ± 0.02 ... ... 0.9 ± 0.1 0.6 ± 0.1

Fallback model

Luminosity L1 (1055erg s−1) log𝒰(10−4,103) ... ... ... ... 4.5 ± 0.1 ... ... ... ...
Transition time ttr (day) log𝒰(10−4,104) ... ... ... ... ... ... ... ...

CSM

CSM mass MCSM (M) log𝒰(0.01,300) ... ... ... ... ... ...
CSM density ρ(10−14 cm−3) log𝒰(10−14,102) ... ... ... ... ... ...
Power-law index of the CSM 𝒰(0,2) ... ... ... ... ... 0.6 ± 0.3 1.8 ± 0.1 0.5 ± 0.2 ...

density profile s

Slope of the outer SN ejecta 𝒰(8,12) ... ... ... ... ... ...

density profile n

Slope of the inner SN ejecta fixed ... ... ... ... ... 0 0 0 ...

density profile δ

Progenitor radius R0 (AU) log𝒰(0.1,1000) ... ... ... ... ... ...

Fit quality

Log Bayesian evidence (log Z) 516 640 639 541 497 644 642 638 287
Number of free parameters 11 12 10 7 10 11 14 13 7

Derived properties

γ-ray escape time t0 (day) 630 ± 80 570 ± 20 290 ± 20 ... 300 ± 30
Nickel mass MNi (M) ... 42 ± 3 ... ...
Kinetic energy Ekin (1051 erg) 21 ± 2 14 ± 1 23 ± 2 12 ± 1 12 ± 2
Rotational energy Erot (1051 erg) ... ... ... ... ... ...

Notes. The model “56Ni (red)” only fitted the data in the r and redder bands. We used uniform (𝒰) and log uniform (log𝒰) priors. The uncertainties of the marginalised posteriors are quoted at 1σ confidence. The explosion date is measured with respect to the date of the first detection. All marginalised posteriors are reported in linear units. The Bayesian evidence is reported in log units. The kinetic energy of the ejecta was computed via and the rotational energy of the magnetar via Erot = 2 × 1052 (MNS/1.4 M)3/2 (P0/1 ms)−2 erg.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.