Table 1
Architecture, accuracy, AUROC, TPR0, and TPR10 of all the models in chronological order of creation.
Model name | Model structure | Accuracy | AUROC | TPR0 | TPR10 |
---|---|---|---|---|---|
CNN 1 | 5 CNN Layers | 88.21 | 0.951 | 0.000 | 0.07 |
CNN 2 | 4 CNN Layers | 86.74 | 0.915 | 0.000 | 0.4 |
CNN 3 | 8 CNN Layers | 88.51 | 0.968 | 0.033 | 0.37 |
CNN 4 | 3 CNN Layers | 88.49 | 0.956 | 0.000 | 0.68 |
CNN 5 | 25 CNN Layers | 91.26 | 0.974 | 0.004 | 0.004 |
Lens Detector 1 | CNN 1+1 H16+1(E) | 89.57 | 0.961 | 0.000 | 0.643 |
Lens Detector 2 | CNN 2+1 H16 + 1(E) | 88.13 | 0.950 | 0.001 | 0.001 |
Lens Detector 3 | CNN2 + 2 H16 + 1(E) | 88.00 | 0.962 | 0.018 | 0.018 |
Lens Detector 4 | CNN 2 + 2 H32 + 1(E) | 88.12 | 0.952 | 0.121 | 0.124 |
Lens Detector 5 | CNN 2 + 4 H64 + 2 (E) | 88.46 | 0.955 | 0.125 | 0.133 |
Lens Detector 6 | CNN 2 + 4 H128 + 4(E) | 89.51 | 0.957 | 0.003 | 0.004 |
Lens Detector 7 | CNN 3 + 8 H128 + 2(E) | 91.45 | 0.968 | 0.000 | 0.410 |
Lens Detector 8 | CNN 4 + 2 H384 + 2 (E) | 89.43 | 0.954 | 0.000 | 0.758 |
Lens Detector 9 | 3 CNN Layers + 2 H384 + 2 (E) | 89.61 | 0.959 | 0.000 | 0.789 |
Lens Detector 10 | 5 CNN Layers + 8 H128 + 2 (E) | 90.58 | 0.970 | 0.180 | 0.23 |
Lens Detector 11 | 5 CNN Layers + 8 H128 + 4 (E) | 90.45 | 0.966 | 0.219 | 0.34 |
Lens Detector 12 | 8 CNN Layers + 8 H128 + 4 (E) | 89.82 | 0.960 | 0.040 | 0.680 |
Lens Detector 13 | 8 CNN Layers + 8 H128 + 4 (E) | 91.94 | 0.975 | 0.175 | 0.525 |
Lens Detector 14 | 8 CNN Layers + 8 H128 + 4 (E) | 91.95 | 0.975 | 0.002 | 0.539 |
Lens Detector 15 | 8 CNN Layers + 8 H128 + 4 (E) | 92.99 | 0.978 | 0.140 | 0.48 |
Lens Detector 16 | 16 CNN Layers + 8 H128 + 8 (E) | 90.97 | 0.962 | 0.225 | 0.24 |
Lens Detector 17 | 16 CNN Layers + 8 H128 + 8 (E) | 92.19 | 0.973 | 0.00 | 0.717 |
Lens Detector 18 | 16 CNN Layers + 8 H128 + 8 (E) | 92.09 | 0.976 | 0.113 | 0.590 |
Lens Detector 19 | 16 CNN Layers + 16 H128 + 8 (E) | 90.03 | 0.961 | 0.114 | 0.115 |
Lens Detector 20 | 25 CNN Layers + 8 H128 + 4 (E) | 91.26 | 0.973 | 0.212 | 0.223 |
Lens Detector 21 | 8 CNN Layers + 8 H128 + 4 (E) | 92.79 | 0.98 | 0.00 | 0.64 |
Notes. The encoder models are named ‘Lens Detector’ followed by a number. The model structure describes if the model uses transfer learning in the CNN backbone or not. Generally, the term ‘XHY ’ in the model structure means there are x heads with dimension y in one encoder layer. Similarly, the term ‘Z(E)’ denotes that there are Z encoders in the structure.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.