Open Access

Table 5.

Description of the local contaminants neural network architecture, including map dimensions.

Layer Size UCP from each resolution
Input 400 × 400 × 1

Conv 400 × 400 × 32
Maxpool 200 × 200 × 32

Conv 200 × 200 × 64
Maxpool 100 × 100 × 64

Conv 100 × 100 × 128
Conv 100 × 100 × 128
Maxpool 50 × 50 × 128

Conv 50 × 50 × 256
Conv 50 × 50 × 256
Maxpool 25 × 25 × 256

Conv 25 × 25 × 256
Conv 25 × 25 × 256
Maxpool 13 × 13 × 256

Conv 13 × 13 × 256

Unpooling 25 × 25 × 256
Conv 25 × 25 × 256
Conv 25 × 25 × 256 UCP

Unpooling 50 × 50 × 256 Idem
Conv 50 × 50 × 256 None
Conv 50 × 50 × 128 Idem UCP

Unpooling 100 × 100 × 128 Idem Idem
Conv 100 × 100 × 128 None None
Conv 100 × 100 × 64 Idem Idem UCP

Unpooling 200 × 200 × 64 Idem Idem Idem
Conv 200 × 200 × 32 Idem Idem Idem UCP

Unpooling 400 × 400 × 32 Idem Idem Idem Idem
Conv 400 × 400 × 14 Idem Idem Idem Idem

Concat 400 × 400 × 70

Conv 400 × 400 × 14

Notes. All convolution kernels are 3 × 3 and max-pooling kernels are 2 × 2. All activation functions (not shown for brevity) are ReLU, except in the output layer where the sigmoid is used.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.