Free Access

 

 

Table 1:

Parameter values of our standard scenario.
  Parameter Standard value Comment
  $D_{\rm S}$ 8 kpc distance to Galactic bulge
  $D_{\rm L}$ 6 kpc  
  $M_{\rm Star}$ $0.3~M\ensuremath{_{\hbox{$\odot$ }}} $ most abundant type of star
  $\mu_\perp$ $7~{\rm mas/year}$ ${=}v_\perp=200$ km s-1 at $D_{\rm L} = 6$ kpc
* $q_{\rm PS}$ 10-3 Jupiter/Sun mass ratio
* $\theta _{\rm PS}$ $1.3~\ensuremath{\theta_{E}} $ wide separation caustic
* $q_{\rm MP}$ 10-2 Moon/Earth mass ratio
* $\theta _{\rm MP}$ $1.0~\ensuremath{\theta_{E}} ^P$ planetary Einstein radius
* $R_{\rm Source}$ $R_{\hbox {$\odot $ }}$ brightness requirements vs. stellar abundance
* $f_{\rm sampled}$ $\simeq\frac{1 ~{\rm frame}}{15~{\rm min}}$ high-cadence observation
* $\sigma$ 20 mmag typical value in past observations

Notes. Parameters marked with an asterisk (*) are varied in our simulations in order to evaluate their influence on the lunar detection rate and to compare different triple-lens scenarios. The fixed parameters lead to values for the Einstein ring radius, $\ensuremath{\theta_{E}} =0.32$ mas, i.e. 1.9 AU in the lens plane, and the Einstein time, $t_E \simeq 17$ days. The lensed system is a Saturn-mass planet at a projected separation of 2.5 AU from its $0.3~M_{\hbox{$\odot$ }}$ M-dwarf host, the Earth-mass satellite orbits the planet at 0.06 AU, i.e. 0.01 mas angular separation, cf. Fig. 10.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.