Issue |
A&A
Volume 693, January 2025
|
|
---|---|---|
Article Number | A306 | |
Number of page(s) | 23 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202451491 | |
Published online | 28 January 2025 |
Stellar atmospheric parameters and chemical abundances of ~5 million stars from S-PLUS multiband photometry
1
Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama,
Copayapu 485,
Copiapó,
Chile
2
Millennium Institute of Astrophysics,
Nuncio Monseñor Sotero Sanz 100, Of. 104,
Providencia,
Santiago,
Chile
3
Instituto de Astrofísica de La Plata (CCT La Plata – CONICET – UNLP),
B1900FWA,
La Plata,
Argentina
4
Universidade Presbiteriana Mackenzie,
Rua da Consolação, 930, Consolação,
São Paulo
01302-907,
Brazil
5
Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Astronomia,
Rua do Matão, 1226,
05509-090
São Paulo,
Brazil
6
Departamento de Astronomía, Universidad de La Serena,
Avenida Juan Cisternas 1200,
La Serena,
Chile
7
Instituto de Astrofísica, Pontificia Universidad Católica de Chile,
Av. Vicuña Mackenna 4860,
7820436
Macul,
Santiago,
Chile
8
Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile,
Av. Vicuña Mackenna 4860,
7820436
Macul,
Santiago,
Chile
9
NSF NOIRLab,
Tucson,
AZ
85719,
USA
10
Kavli Institute for Cosmological Physics, University of Chicago,
5640 S Ellis Avenue,
Chicago,
IL
60637,
USA
11
Observatório do Valongo, Universidade Federal do Rio de Janeiro,
Ladeira Pedro Antonio 43,
20080-090
Rio de Janeiro,
Brazil
12
Facultad de Cs. Astronómicas y Geofísicas, Universidad Nacional de La Plata,
Paseo del Bosque S/N,
B1900FWA,
La Plata,
Argentina
13
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens,
15236
Penteli,
Greece
14
Centro de Astronomía (CITEVA), Universidad de Antofagasta,
Av. Angamos 601,
Antofagasta,
Chile
15
Observatório Nacional (ON), MCTI,
Rua Gal. José Cristino 77,
Rio de Janeiro
20921-400,
RJ,
Brazil
16
Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena,
Raúl Bitrán 1305,
La Serena,
Chile
17
Instituto de Astrofísica, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,
Fernández Concha 700,
Las Condes,
Santiago,
Chile
18
Centro Brasileiro de Pesquisas Físicas,
Rua Dr. Xavier Sigaud 150, CEP 22290-180,
Rio de Janeiro,
RJ,
Brazil
19
Campus Avançado em Jandaia do Sul, Universidade Federal do Paraná,
Jandaia do Sul,
PR
86900-000,
Brazil
20
Programa de Pós-graduação em Ciência da Computação, Universidade Estadual de Maringá,
Maringá,
PR,
87020-900,
Brazil
21
European Southern Observatory,
Karl Schwarzschild strasse 2,
85748,
Garching bei München,
Germany
22
Instituto de Astrofísica de Andalucía, CSIC,
Apt 3004,
18080
Granada,
Spain
23
Instituto de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante,
San Vicent del Raspeig,
03080,
Alicante,
Spain
24
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales y Ciclo Básico Común.
Buenos Aires,
Argentina
25
CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE).
Buenos Aires,
Argentina
26
Departamento de Astronomia, Instituto de Física, Universidade Federal do Rio Grande do Sul,
Porto Alegre,
RS,
Brazil
27
Departamento de Astronomía, Universidad de La Serena,
Raúl Bitrán 1720256,
La Serena,
Coquimbo,
Chile
28
The Observatories of the Carnegie Institution for Science,
813 Santa Barbara St,
Pasadena,
CA
91101,
USA
29
Departamento de Física, Universidade Federal de Santa Catarina,
Florianópolis,
SC
88040-900,
Brazil
★ Corresponding author; ferreiralopes1011@gmail.com
Received:
13
July
2024
Accepted:
18
November
2024
Context. The APOGEE, GALAH, and LAMOST spectroscopic surveys have substantially contributed to our understanding of the Milky Way by providing a wide range of stellar parameters and chemical abundances. Complementing these efforts, photometric surveys that include narrowband and medium-band filters, such as Southern Photometric Local Universe Survey (S-PLUS), provide a unique opportunity to estimate the atmospheric parameters and elemental abundances for a much larger number of sources, compared to spectroscopic surveys.
Aims. Our aim is to establish methodologies for extracting stellar atmospheric parameters and selected chemical abundances from S-PLUS photometric data, which cover approximately 3000 square degrees, by applying seven narrowband and five broadband filters.
Methods. We used all 66 S-PLUS colors to estimate parameters based on three different training samples from the LAMOST, APOGEE, and GALAH surveys, applying cost-sensitive neural network (NN) and random forest (RF) algorithms. We kept the stellar abundances that lacked corresponding absorption features in the S-PLUS filters to test for spurious correlations in our method. Furthermore, we evaluated the effectiveness of the NN and RF algorithms by using estimated Teff and log g values as the input features to determine other stellar parameters and abundances. The NN approach consistently outperforms the RF technique on all parameters tested. Moreover, incorporating Teff and log g leads to an improvement in the estimation accuracy by approximately 3%. We kept only parameters with a goodness-of-fit higher than 50%.
Results. Our methodology allowed us to obtain reliable estimates for fundamental stellar parameters (Teff, log g, and [Fe/H]) and elemental abundance ratios such as [α/Fe], [Al/Fe], [C/Fe], [Li/Fe], and [Mg/Fe] for approximately five million stars across the Milky Way, with a goodness-of-fit above 60%. We also obtained additional abundance ratios, including [Cu/Fe], [O/Fe], and [Si/Fe]. However, these ratios should be used cautiously due to their low accuracy or lack of a clear relationship with the S-PLUS filters. Validation of our estimations and methods was performed using star clusters, Transiting Exoplanet Survey Satellite (TESS) data and Javalambre Photometric Local Universe Survey (J-PLUS) photometry, further demonstrating the robustness and accuracy of our approach.
Conclusions. By leveraging S-PLUS photometric data and advanced machine learning techniques, we have established a robust framework for extracting fundamental stellar parameters and chemical abundances from medium-band and narrowband photometric observations. This approach offers a cost-effective alternative to high-resolution spectroscopy. The estimated parameters hold significant potential for future studies, particularly when classifying objects within our Milky Way or gaining insights into its various stellar populations.
Key words: catalogs / stars: abundances / Galaxy: abundances
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.