Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A80 | |
Number of page(s) | 11 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202450061 | |
Published online | 31 October 2024 |
Theoretical wavelet ℓ1-norm from one-point probability density function prediction
1
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM,
91191
Gif-sur-Yvette,
France
2
Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München,
Scheinerstraße 1,
81679
München,
Germany
3
Institutes of Computer Science and Astrophysics, Foundation for Research and Technology Hellas (FORTH),
Heraklion,
Crete,
Greece
★ Corresponding author; vilasini.tinnanerisreekanth@cea.fr
Received:
21
March
2024
Accepted:
19
August
2024
Context. Weak gravitational lensing, which results from the bending of light by matter along the line of sight, is a potent tool for exploring large-scale structures, particularly in quantifying non-Gaussianities. It is a pivotal objective for upcoming surveys. In the realm of current and forthcoming full-sky weak-lensing surveys, convergence maps, which represent a line-of-sight integration of the matter density field up to the source redshift, facilitate field-level inference. This provides an advantageous avenue for cosmological exploration. Traditional two-point statistics fall short of capturing non-Gaussianities, necessitating the use of higher-order statistics to extract this crucial information. Among the various available higher-order statistics, the wavelet ℓ1 -norm has proven its efficiency in inferring cosmology. However, the lack of a robust theoretical framework mandates reliance on simulations, which demand substantial resources and time.
Aims. Our novel approach introduces a theoretical prediction of the wavelet ℓ1-norm for weak-lensing convergence maps that is grounded in the principles of large-deviation theory. This method builds upon recent work and offers a theoretical prescription for an aperture mass one-point probability density function.
Methods. We present for the first time a theoretical prediction of the wavelet ℓ1-norm for convergence maps that is derived from the theoretical prediction of their one-point probability distribution. Additionally, we explored the cosmological dependence of this prediction and validated the results on simulations.
Results. A comparison of our predicted wavelet ℓ1 -norm with simulations demonstrates a high level of accuracy in the weakly nonlinear regime. Moreover, we show its ability to capture cosmological dependence. This paves the way for a more robust and efficient parameter-inference process.
Key words: gravitational lensing: weak / cosmology: miscellaneous / cosmology: theory / dark matter / large-scale structure of Universe
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.