Issue |
A&A
Volume 687, July 2024
|
|
---|---|---|
Article Number | A278 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202450053 | |
Published online | 22 July 2024 |
Asteroid-NeRF: A deep-learning method for 3D surface reconstruction of asteroids
Research Centre for Deep Space Explorations | Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University,
Hung Hom,
Kowloon,
Hong Kong
e-mail: bo.wu@polyu.edu.hk
Received:
21
March
2024
Accepted:
15
May
2024
Context. Asteroids preserve important information about the origin and evolution of the Solar System. Three-dimensional (3D) surface models of asteroids are essential for exploration missions and scientific research. Regular methods for 3D surface reconstruction of asteroids, such as stereo-photogrammetry (SPG), usually struggle to reconstruct textureless areas and can only generate sparse surface models. Stereo-photoclinometry (SPC) can reconstruct pixel-wise topographic details but its performance depends on the availability of images obtained under different illumination conditions and suffers from uncertainties related to surface reflectance and albedo.
Aims. This paper presents Asteroid-NeRF, a novel deep-learning method for 3D surface reconstruction of asteroids that is based on the state-of-the-art neural radiance field (NeRF) method.
Methods. Asteroid-NeRF uses a signed distance field (SDF) to reconstruct a 3D surface model from multi-view posed images of an asteroid. In addition, Asteroid-NeRF incorporates appearance embedding to adapt to different illumination conditions and to maintain the geometric consistency of a reconstructed surface, allowing it to deal with the different solar angles and exposure conditions commonly seen in asteroid images. Moreover, Asteroid-NeRF incorporates multi-view photometric consistency to constrain the SDF, enabling optimised reconstruction.
Results. Experimental evaluations using actual images of asteroids Itokawa and Bennu demonstrate the promising performance of Asteroid-NeRF, complementing traditional methods such as SPG and SPC. Furthermore, due to the global consistency and pixel-wise training of Asteroid-NeRF, it produces highly detailed surface reconstructions. Asteroid-NeRF offers a new and effective solution for high-resolution 3D surface reconstruction of asteroids that will aid future exploratory missions and scientific research on asteroids.
Key words: techniques: image processing / minor planets, asteroids: general / planets and satellites: surfaces
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.