Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A15 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202347739 | |
Published online | 29 January 2024 |
Effects of tidal deformation on planetary phase curves
1
Observatoire astronomique de l’Université de Genève,
chemin Pegasi 51,
1290
Versoix,
Switzerland
e-mail: tunde.akinsanmi@unige.ch
2
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
3
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto,
Portugal
4
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua Campo Alegre,
4169-007
Porto,
Portugal
Received:
17
August
2023
Accepted:
4
October
2023
With the continuous improvement in the precision of exoplanet observations, it has become feasible to probe for subtle effects that can enable a more comprehensive characterization of exoplanets. A notable example is the tidal deformation of ultra-hot Jupiters by their host stars, whose detection can provide valuable insights into the planetary interior structure. In this work we extend previous research on modeling deformation in transit light curves by proposing a straightforward approach to account for tidal deformation in phase curve observations. The planetary shape is modeled as a function of the second fluid Love number for radial deformation h2f. For a planet in hydrostatic equilibrium, h2f provides constraints on the interior structure of the planet. We show that the effect of tidal deformation manifests across the full orbit of the planet as its projected area varies with phase, thereby allowing us to better probe the planet’s shape in phase curves than in transits. Comparing the effects and detectability of deformation by different space-based instruments (JWST, HST, PLATO, CHEOPS, and TESS), we find that the effect of deformation is more prominent in infrared observations where the phase curve amplitude is the largest. A single JWST phase curve observation of a deformed planet, such as WASP-12 b, can allow up to a 17σ measurement of h2f compared to 4σ from transit-only observation. This high-precision h2f measurement can constrain the core mass of the planet to within 19% of the total mass, thus providing unprecedented constraints on the interior structure. Due to the lower phase curve amplitudes in the optical, the other instruments provide ≤ 4σ precision on h2f depending on the number of phase curves observed. We also find that detecting deformation from infrared phase curves is less affected by uncertainty in limb darkening, unlike detection in transits. Finally, the assumption of sphericity when analyzing the phase curve of deformed planets can lead to biases in several system parameters (radius, dayside and nightside temperatures, and hotspot offset, among others), thereby significantly limiting their accurate characterization.
Key words: planets and satellites: interiors / planets and satellites: fundamental parameters / planets and satellites: atmospheres / techniques: photometric
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.