Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202346705 | |
Published online | 08 February 2024 |
Constraining the reflective properties of WASP-178 b using CHEOPS photometry★,★★
1
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania,
Italy
e-mail: isabella.pagano@inaf.it
2
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
3
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich,
Switzerland
4
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE,
UK
5
Physikalisches Institut, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
6
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto,
Portugal
7
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
8
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS,
UK
9
Aix-Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille,
France
10
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
11
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
12
Instituto de Astrofisica de Canarias,
Via Lactea s/n,
38200
La Laguna,
Tenerife,
Spain
13
Departamento de Astrofisica, Universidad de La Laguna,
Astrofísico Francisco Sanchez s/n,
38206
La Laguna,
Tenerife,
Spain
14
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra,
Spain
15
Institut d’Estudis Espacials de Catalunya (IEEC),
Gran Capità 2–4,
08034
Barcelona,
Spain
16
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc,
Hungary
17
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada (Madrid),
Spain
18
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto,
Portugal
19
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz,
Austria
20
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
21
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
22
Université de Paris Cité, Institut de physique du globe de Paris, CNRS,
1 rue Jussieu,
75005
Paris,
France
23
ESTEC, European Space Agency,
Keplerlaan 1,
2201AZ
Noordwijk,
The Netherlands
24
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
25
INAF, Osservatorio Astrofisico di Torino,
Via Osservatorio, 20,
10025
Pino Torinese To,
Italy
26
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund,
Sweden
27
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
28
Centre Vie dans l’Univers, Faculté des sciences, Université de Genève,
Quai Ernest-Ansermet 30,
1211
Genève 4,
Switzerland
29
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden,
The Netherlands
30
Department of Space, Earth and Environment, Chalmers University of Technology,
Onsala Space Observatory,
439 92
Onsala,
Sweden
31
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino,
Italy
32
Department of Astrophysics, University of Vienna,
Türkenschanzstrasse 17,
1180
Vienna,
Austria
33
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk,
The Netherlands
34
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121 Budapest,
Konkoly Thege Miklós
út 15–17,
Hungary
35
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest,
Hungary
36
German Aerospace Center (DLR), Institute of Optical Sensor Systems,
Rutherfordstraße 2,
12489
Berlin,
Germany
37
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
38
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis Arago,
75014
Paris,
France
39
Astrophysics Group, Lennard Jones Building, Keele University,
Staffordshire,
ST5 5BG,
UK
40
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
41
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova,
Italy
42
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
43
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin,
Hardenbergstr. 36,
10623
Berlin,
Germany
44
Institut fuer Geologische Wissenschaften, Freie Universitaet Berlin,
Maltheserstrasse 74-100,12249
Berlin,
Germany
45
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna,
Austria
46
Physikalisches Institut, University of Bern,
Sidlerstrasse 5,
3012
Bern,
Switzerland
47
Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
48
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700 Szombathely,
Szent Imre
h. u. 112,
Hungary
49
MTA-ELTE Exoplanet Research Group,
9700 Szombathely,
Szent Imre
h. u. 112,
Hungary
50
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA,
UK
51
Institute for Theoretical Physics and Computational Physics, Graz University of Technology,
Petersgasse 16,
8010
Graz,
Austria
Received:
19
April
2023
Accepted:
31
August
2023
Context. Multiwavelength photometry of the secondary eclipses of extrasolar planets is able to disentangle the reflected and thermally emitted light radiated from the planetary dayside. Based on this, we can measure the planetary geometric albedo Ag, which is an indicator of the presence of clouds in the atmosphere, and the recirculation efficiency ϵ, which quantifies the energy transport within the atmosphere.
Aims. We measure Ag and ϵ for the planet WASP-178 b, a highly irradiated giant planet with an estimated equilibrium temperature of 2450 K.
Methods. We analyzed archival spectra and the light curves collected by CHEOPS and TESS to characterize the host WASP-178, refine the ephemeris of the system, and measure the eclipse depth in the passbands of the two telescopes.
Results. We measured a marginally significant eclipse depth of 70 ± 40 ppm in the TESS passband, and a statistically significant depth of 70 ± 20 ppm in the CHEOPS passband.
Conclusions. Combining the eclipse-depth measurement in the CHEOPS (λeff = 6300 Å) and TESS (λeff = 8000 Å) passbands, we constrained the dayside brightness temperature of WASP-178 b in the 2250–2800 K interval. The geometric albedo 0.1< Ag<0.35 generally supports the picture that giant planets are poorly reflective, while the recirculation efficiency ϵ >0.7 makes WASP-178 b an interesting laboratory for testing the current heat-recirculation models.
Key words: planets and satellites: individual: wasp-178 b / techniques: photometric / planets and satellites: detection / planets and satellites: gaseous planets / planets and satellites: atmospheres
The CHEOPS photometric data used in this work are available at the CDS cdsarc.cds.unistra.fr or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/682/A102
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.