Issue |
A&A
Volume 681, January 2024
|
|
---|---|---|
Article Number | A53 | |
Number of page(s) | 8 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202347560 | |
Published online | 10 January 2024 |
Unravelling the post-collision properties of the Cartwheel galaxy: A MUSE exploration of its bar and inner region
1
Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Post Bag 4, Pune 411007, India
e-mail: chayanm@iucaa.in; mondalchayan1991@gmail.com
2
Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560034, India
Received:
25
July
2023
Accepted:
27
September
2023
Aims. We aim to investigate the characteristics of the bar and inner disc in the collisional ring galaxy Cartwheel.
Methods. We used integral field unit (IFU) observations from the Multi-Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope (VLT) to investigate the stellar kinematics, age, and nature of ionised gas in the inner region of the Cartwheel galaxy. We produced stellar line of sight velocity (V), velocity dispersion (σ), h3 velocity moment, stellar population age, and emission-line maps of the galaxy using the Galaxy IFU Spectroscopy Tool (GIST) pipeline.
Results. The observed nature of the intensity, V, and σ profiles together support the existence of a stellar bar, as earlier revealed from near-infrared (NIR) Ks-band imaging. A weak correlation between V/σ and h3 is found within the bar radius, providing more kinematic evidence for a stellar bar that survived the drop-through collision. The overall weak anti-correlation between V/σ and h3 in the disc implies that the stellar orbits in the disc are less stable, which might be due to the impact of the collision. The mass-weighted age map of the galaxy shows that the stellar populations in the bar region are relatively old, with an increasing gradient from the bar edge to the centre, further evidence that the bar was present before the galaxy underwent collision. Using a BPT diagram, we analysed a central unresolved source detected earlier with NIR imaging and do not find evidence of an active galactic nucleus. Our findings signify the preservation of the pre-collisional structures in the inner region of the Cartwheel, an important point to note when attempting to determine the evolution of collisional galaxy systems, particularly when investigating pre-collisional central regions in theoretical studies.
Key words: galaxies: individual: Cartwheel or ESO 350–G040 / galaxies: structure / galaxies: kinematics and dynamics / galaxies: evolution / galaxies: stellar content
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.