Issue |
A&A
Volume 681, January 2024
Solar Orbiter First Results (Nominal Mission Phase)
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 7 | |
Section | 9. The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202346019 | |
Published online | 11 January 2024 |
Determination of the SO/PHI-HRT wavefront degradation using multiple defocused images
1
Instituto de Astrofísica de Andalucía (IAA-CSIC), Apartado de Correos 3004, 18080 Granada, Spain
e-mail: fbailen@iaa.es; jti@iaa.es
2
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: solanki@mps.mpg.de
3
Univ. Paris-Sud, Institut d’Astrophysique Spatiale, UMR 8617, CNRS, Bâtiment 121, 91405 Orsay Cedex, France
4
Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir, km 4, 28850 Torrejón de Ardoz, Spain
5
Universitat de València, Catedrático José Beltrán 2, 46980 Paterna-Valencia, Spain
6
Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI Ernst-Zermelo-Str. 4, 79104 Freiburg, Germany
7
Institut für Datentechnik und Kommunikationsnetze der TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
8
University of Barcelona, Department of Electronics, Carrer de Martí i Franquès, 1 – 11, 08028 Barcelona, Spain
9
Instituto Universitario “Ignacio da Riva”, Universidad Politécnica de Madrid, IDR/UPM, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
10
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Received:
30
January
2023
Accepted:
5
November
2023
Context. The Polarimetric and Helioseismic Imager on board the Solar Orbiter mission (SO/PHI) offers refocusing capabilities to cope with the strongly varying thermal environment of the optical system along the spacecraft’s elliptical orbit. The series of images recorded during in-flight focus calibrations can be employed for phase diversity analyses.
Aims. In this work we infer the wavefront degradation caused by the thermo-optical effects in the High Resolution Telescope (HRT) from images taken during the fine and coarse focus scans performed in the commissioning phase of the instrument. The difference between these two series of images are mainly related to the employed defocused step (smaller for the fine scans) and the signal-to-noise ratio (higher for the coarse scans). We use the retrieved wavefronts to reconstruct the original scene observed during the calibration of the instrument.
Methods. We applied a generalized phase diversity algorithm that allowed us to use several images taken with different amounts of defocus to sense the wavefront degradation caused by the instrument. The algorithm also uses information from both the inferred wavefront and the series of images to restore the solar scene.
Results. We find that most of the retrieved Zernike coefficients tend to converge to the same value when increasing the number of images employed for PD for both the fine and the coarse focusing scans. The restored scenes also show signs of convergence, and the merit function is minimized more as K increases. Apart from a defocus, the inferred wavefronts are consistent for the two datasets (λ/10 − λ/11). For the fine scan images, the quiet-sun contrast improves from 4.5% for the original focused image up to about 10%. For the coarse scan images, the contrast of the restored scene is as high as 11%.
Key words: instrumentation: polarimeters / techniques: image processing / Sun: magnetic fields / Sun: photosphere
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.