Issue |
A&A
Volume 680, December 2023
|
|
---|---|---|
Article Number | A42 | |
Number of page(s) | 10 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202347022 | |
Published online | 07 December 2023 |
A Babcock-Leighton dynamo model of the Sun incorporating toroidal flux loss and the helioseismically inferred meridional flow
1
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: cloutier@mps.mpg.de
2
Institut für Astrophysik und Geophysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
Received:
26
May
2023
Accepted:
28
September
2023
Context. Key elements of the Babcock-Leighton model for the solar dynamo are increasingly constrained by observations.
Aims. We investigate whether the Babcock-Leighton flux-transport dynamo model remains in agreement with observations if the meridional flow profile is taken from helioseismic inversions. Additionally, we investigate the effect of the loss of toroidal flux through the solar surface.
Methods. We employ the two-dimensional flux-transport Babcock-Leighton dynamo framework. We use the helioseismically inferred meridional flow profile, and include toroidal flux loss in a way that is consistent with the amount of poloidal flux generated by Joy’s law. Our model does not impose a preference for emergences at low latitudes; however, we do require that the model produces such a preference.
Results. We can find solutions that are in general agreement with observations, including the latitudinal migration of the butterfly wings and the 11 year period of the cycle. The most important free parameters in the model are the depth to which the radial turbulent pumping extends and the turbulent diffusivity in the lower half of the convection zone. We find that the pumping needs to extend to depths of about 0.80 R⊙ and that the bulk turbulent diffusivity needs to be around 10 km2 s−1 or less. We find that the emergences are restricted to low latitudes without the need to impose such a preference.
Conclusions. The flux-transport Babcock-Leighton model, incorporating the helioseismically inferred meridional flow and toroidal field loss term, is compatible with the properties of the observed butterfly diagram and with the observed toroidal loss rate. Reasonably tight constraints are placed on the remaining free parameters. The pumping needs to be just below the depth corresponding to the location where the meridional flow changes direction, and where numerical simulations suggest the convection zone becomes marginally subadiabatic. However, our linear model does not reproduce the observed ‘rush to the poles’ of the diffuse surface radial field resulting from the decay of sunspots; reproducing this might require the imposition of a preference for flux to emerge near the equator.
Key words: Sun: magnetic fields / Sun: activity / Sun: interior
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.