Issue |
A&A
Volume 677, September 2023
|
|
---|---|---|
Article Number | A83 | |
Number of page(s) | 17 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202244982 | |
Published online | 08 September 2023 |
Dynamics of trans-Neptunian objects near the 3/1 mean-motion resonance with Neptune
1
CFisUC, Departamento de Física, Universidade de Coimbra,
3004-516
Coimbra, Portugal
e-mail: acor@uc.pt
2
Instituto de Telecomunicações, Universidade de Aveiro,
3810-193
Aveiro, Portugal
3
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Université,
77 Av. Denfert-Rochereau,
75014
Paris, France
Received:
15
September
2022
Accepted:
14
June
2023
The complex classification of trans-Neptunian objects (TNOs) that are captured in mean-motion resonances (MMRs) and the constraint of their multiple origins are two significant open problems concerning the Solar System. The case-by-case study of the different MMRs and their characteristics provide information about their origin and dynamics, which helps us to understand the early stages of the Solar System evolution. In this paper, we study the dynamics of the detected TNOs close to a 3/1 MMR with Neptune. We initially use a semi-analytic three-body model to investigate the coplanar secular dynamics of these objects and find the stationary points. We then use surface sections and stability maps to analyse the non-averaged dynamics. These methods allow us to isolate the different stability regions and determine the extent of the chaotic regions. We show that stability maps are an extremely powerful tool for studying the resonant dynamics when they are computed in terms of the resonant angle. We then use these maps to study the non-planar three-body problem and the full dynamics in the presence of planetary perturbations. We confirm that TNOs near the 3/1 MMR regions can exist at very high inclinations. In the framework of the three-body problem, many of these objects can also be stable outside the 3/1 MMR owing to a Kozai secular resonance. However, when we take into account the perturbations of the four giant planets, the Kozai regions disappear and only the 3/1 MMR region remains, with eccentricities e ≲ 0.5.
Key words: celestial mechanics / Kuiper belt: general / planets and satellites: dynamical evolution and stability
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.