Issue |
A&A
Volume 669, January 2023
|
|
---|---|---|
Article Number | A89 | |
Number of page(s) | 14 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202244923 | |
Published online | 16 January 2023 |
Imaging individual active regions on the Sun’s far side with improved helioseismic holography
1
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: yangd@mps.mpg.de
2
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
3
Center for Space Science, NYUAD Institute, New York University Abu Dhabi, PO Box 129188 Abu Dhabi, UAE
4
Makutu, Inria, TotalEnergies, University of Pau, 64000 Pau, France
Received:
8
September
2022
Accepted:
8
November
2022
Context. Helioseismic holography is a useful method for detecting active regions on the Sun’s far side and improving space weather forecasts.
Aims. We aim to improve helioseismic holography using a clear formulation of the problem, an accurate forward solver in the frequency domain, and a better understanding of the noise properties.
Methods. Building on the work of Lindsey et al. we define the forward- and backward-propagated wave fields (ingression and egression) in terms of a Green’s function. This Green’s function is computed using an accurate forward solver in the frequency domain. We analyse overlapping segments of 31 h of SDO/HMI dopplergrams, with a cadence of 24 h. Phase shifts between the ingression and the egression are measured and averaged to detect active regions on the far side.
Results. The phase maps are compared with direct extreme-ultraviolet (EUV) intensity maps from STEREO/EUVI. We confirm that medium-sized active regions can be detected on the far side with high confidence. Their evolution (and possible emergence) can be monitored on a daily time scale. Seismic maps averaged over 3 days provide an active-region detection rate as high as 75% and a false-discovery rate as low as 7% for active regions with areas above one thousandth of a hemisphere. For a large part, these improvements can be attributed to the use of a complete Green’s function (all skips) and the use of all available observations on the front side (full pupil).
Conclusions. Improved helioseismic holography enables the study of the evolution of medium-sized active regions on the Sun’s far side.
Key words: Sun: helioseismology / Sun: oscillations / Sun: activity / Sun: heliosphere
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model.
Open access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.