Issue |
A&A
Volume 662, June 2022
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202243544 | |
Published online | 24 June 2022 |
Non-LTE modelling of the HC2NC and HNC3 abundance in astrophysical environments
Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251,
35000
Rennes,
France
e-mail: cheikhtidiane.bop@ucad.edu.sn
Received:
14
March
2022
Accepted:
27
April
2022
The isomers of HC3N, namely HC2NC and HNC3, are widely observed in the interstellar medium and in circumstellar envelopes. Their abundance has been determined under the assumption of local thermodynamic equilibrium (LTE) conditions or non-LTE radiative transfer models, but in considering the collisional excitation of HC3N as the same for all isomers. Chemical models for the prototypical cold cores, TMC-1 and L1544, reproduced the abundance of HC3N fairly well, but they tend to overestimate the abundances of HC2NC and HNC3 with respect to the observations. It is therefore worth revisiting the interpretation of the observational spectra of these isomers using a rigorous non-LTE modelling. The abundance of HC2NC and HNC3 were then determined using non-LTE radiative transfer calculations based on the proper rate coefficients for the first time in this work. Modelling the brightness temperature of HC2NC and HNC3 when using their proper collision rate coefficients shows that models based on LTE or non-LTE with approximate collision data may lead to deviations of up to a factor of ~1.5. Reinterpreting the observational spectra led us to significant differences relative to the observed abundances previously determined. Our findings suggest quite similar abundance ratios for the TMC-1 and L1544 cold cores as well as the L483 protostar. This work will encourage further modelling with more robust non-LTE radiative transfer calculations and future studies to revisit the chemistry of HC3N and its isomers in cold molecular clouds.
Key words: scattering / molecular data / molecular processes / radiative transfer / ISM: abundances / ISM: molecules
© C. T. Bop et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.