Issue |
A&A
Volume 659, March 2022
|
|
---|---|---|
Article Number | A80 | |
Number of page(s) | 8 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202142343 | |
Published online | 15 March 2022 |
The Milky Way’s middle-aged inner ring
Max-Planck-Institut fur Extraterrestrische Physik, Gießenbachstraße, 85748 Garching, Germany
e-mail: swylie@mpe.mpg.de
Received:
30
September
2021
Accepted:
23
December
2021
Aims. We investigate the metallicity, age, and orbital anatomy of the inner Milky Way, specifically focussing on the outer bar region.
Methods. We integrated a sample of APOGEE DR16 inner Galaxy stars in a state of the art bar-bulge potential with a slow pattern speed and investigated the link between the resulting orbits and their [Fe/H] and ages. By superimposing the orbits, we built density, [Fe/H], and age maps of the inner Milky Way, which we divided further using the orbital parameters eccentricity, |Xmax|, and |Zmax|.
Results. We find that at low heights from the Galactic plane, the Galactic bar gradually transitions into a radially thick, vertically thin, elongated inner ring with average solar [Fe/H]. This inner ring is mainly composed of stars with AstroNN ages between 4 and 9 Gyr with a peak in age between 6 and 8 Gyr, making the average age of the ring ∼6 Gyr. The vertical thickness of the ring decreases markedly towards younger ages. We also find very large L4 Lagrange orbits that have average solar to super-solar metallicities and intermediate ages. Lastly, we confirm a clear X-shape in the [Fe/H] and density distributions at large Galactic heights.
Conclusions. The orbital structure obtained for the APOGEE stars reveals that the Milky Way hosts an inner ring-like structure between the planar bar and corotation. This structure is on average metal rich, intermediately aged, and enhances the horizontal metallicity gradient along the bar’s major axis.
Key words: Galaxy: bulge / Galaxy: disk / Galaxy: evolution / Galaxy: structure / Galaxy: abundances / Galaxy: kinematics and dynamics
© S. M. Wylie et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.