Issue |
A&A
Volume 656, December 2021
|
|
---|---|---|
Article Number | A156 | |
Number of page(s) | 27 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202039030 | |
Published online | 16 December 2021 |
The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3
1
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: aqueiroz@aip.de
2
Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
3
Department of Astronomy, Universidade de São Paulo, São Paulo 05508-090, Brazil
4
Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 106, C.P. 22800, Ensenada, BC, Mexico
5
Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Carrer Martí i Franquès 1, 08028 Barcelona, Spain
6
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS 91501-970, Brazil
7
University of Arizona, Tucson, AZ 85719, USA
8
Observatório Nacional, Sao Cristóvao, Rio de Janeiro, Brazil
9
Observatoire de la Côte d’Azur, Laboratoire Lagrange, 06304 Nice Cedex 4, France
10
Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA
11
Dept. of Physical Sciences, Faculty of Exact Sciences, Universidad Andres Bello, Fernandez Concha 700, Santiago, Chile
12
Vatican Observatory, 00120 Vatican City State, Italy
13
The Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA
14
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
15
Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile
16
Instituto de Astronomía y Ciencias Planetarias de Atacama, Universidad de Atacama, Copayapu 485, Copiapó, Chile
17
Instituto de Astrofisica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain
18
Universidad de La Laguna (ULL), Departamento de Astrofisica, 38206 La Laguna, Tenerife, Spain
19
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile
20
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Avenida Raúl Bitrán s/n, La Serena, Chile
21
Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena, Chile
22
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
23
Centro de Astronomía (CITEVA), Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300, Chile
24
Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago, Chile
25
Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
26
National Optical Astronomy Observatories, Tucson, AZ 85719, USA
Received:
25
July
2020
Accepted:
18
September
2021
We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within |XGal|< 5 kpc, |YGal|< 3.5 kpc, |ZGal|< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge–bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [α/Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low-α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity–|Z|max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity–|Z|max diagram consistently with the mean orbital radius and Vϕ distributions. A clear metallicity gradient as a function of |Z|max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [α/Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature.
Key words: stars: abundances / stars: fundamental parameters / Galaxy: center / Galaxy: general / Galaxy: stellar content / Galaxy: structure
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.