Issue |
A&A
Volume 654, October 2021
|
|
---|---|---|
Article Number | A114 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202141192 | |
Published online | 21 October 2021 |
Uncertainties in the pasta-phase properties of catalysed neutron stars
1
Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
e-mail: dinh@lpccaen.in2p3.fr
2
Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF – CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
e-mail: anthea.fantina@ganil.fr
Received:
27
April
2021
Accepted:
12
July
2021
Context. The interior of a neutron star is expected to exhibit different states of matter. In particular, complex non-spherical configurations known as ‘pasta’ phases may exist at the highest densities in the inner crust, potentially having an impact on different neutron-star phenomena.
Aims. We study the properties of the pasta phase and the uncertainties in the pasta observables which are due to our incomplete knowledge of the nuclear energy functional.
Methods. To this aim, we employed a compressible liquid-drop model approach with surface parameters optimised either on experimental nuclear masses or theoretical calculations. To assess the model uncertainties, we performed a Bayesian analysis by largely varying the model parameters using uniform priors, and generating posterior distributions with filters accounting for both our present low-density nuclear physics knowledge and high-density neutron-star physics constraints.
Results. Our results show that the nuclear physics constraints, such as the neutron-matter equation of state at very low density and the experimental mass measurements, are crucial in determining the crustal and pasta observables. Accounting for all constraints, we demonstrate that the presence of pasta phases is robustly predicted in an important fraction of the inner crust. We estimate the relative crustal thickness associated with pasta phases as Rpasta/Rcrust = 0.128 ± 0.047 and the relative moment of inertia as Ipasta/Icrust = 0.480 ± 0.137.
Conclusions. Our findings indicate that the surface and curvature parameters are more influential than the bulk parameters for the description of the pasta observables. We also show that using a surface tension that is inconsistent with the bulk functional leads to an underestimation of both the average values and the uncertainties in the pasta properties, thus highlighting the importance of a consistent calculation of the nuclear functional.
Key words: stars: neutron / dense matter / plasmas
© H. Dinh Thi et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.