Issue |
A&A
Volume 649, May 2021
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 27 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202040010 | |
Published online | 05 May 2021 |
The VLT-MUSE and ALMA view of the MACS 1931.8-2635 brightest cluster galaxy
1
Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
e-mail: ciocan.bianca-iulia@univie.ac.at
2
Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisboa, Portugal
3
Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016 Lisboa, Portugal
4
Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA, USA
5
Space Telescope Science Institute, Baltimore, MD, USA
6
Physics and Astronomy Dept., Michigan State University, East Lansing, MI 48824, USA
Received:
27
November
2020
Accepted:
26
January
2021
We reveal the importance of ongoing in situ star formation in the brightest cluster galaxy (BCG) in the massive cool-core CLASH cluster MACS 1931.8-2635 at a redshift of z = 0.35 by analysing archival VLT-MUSE optical integral field spectroscopy. Using a multi-wavelength approach, we assessed the stellar and warm ionised medium components, which were spatially resolved by the VLT-MUSE spectroscopy, and linked them to the molecular gas by incorporating sub-mm ALMA observations. We measured the fluxes of strong emission lines such as: [O II] λ3727, Hβ, [O III] λ5007, Hα, [N II] λ 6584, and [S II] λ6718, 6732, which allowed us to determine the physical conditions of the warm ionised gas, such as electron temperature, electron density, extinction, ionisation parameter, (O/H) gas metallicities, star formation rates, and gas kinematics, as well as the star formation history of the system. Our analysis reveals the ionising sources in different regions of the galaxy. The ionised gas flux brightness peak corresponds to the location of the supermassive black hole in the BCG and the system shows a diffuse warm ionised gas tail extending 30 kpc in the north-east direction. The ionised and molecular gas are co-spatial and co-moving, with the gaseous component in the tail likely falling inward, providing fuel for star formation and accretion-powered nuclear activity. The gas is ionised by a mix of star formation and other energetic processes which give rise to LINER-like emission, with active galactic nuclei emission dominant only in the BCG core. We measured a star formation rate of ∼97 M⊙ yr−1, with its peak at the BCG core. However, star formation accounts for only 50–60% of the energetics needed to ionise the warm gas. The stellar mass growth of the BCG at z < 0.5 is dominated either by in situ star formation generated by thermally unstable intracluster medium cooling or by dry mergers, with these mechanisms accounting for the build-up of 20% of the stellar mass of the system. Our measurements reveal that the most central regions of the BCG contain the lowest gas-phase oxygen abundance, whereas the Hα arm exhibits slightly more elevated values, suggesting the transport of gas out to large distances from the centre as a result of active galactic nuclei outbursts. The galaxy is a dispersion-dominated system that is typical for massive, elliptical galaxies. The gas and stellar kinematics are decoupled, with the gaseous velocity fields being more closely related to the bulk motions of the intracluster medium.
Key words: Galaxy: evolution / Galaxy: kinematics and dynamics / Galaxy: fundamental parameters
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.