Issue |
A&A
Volume 647, March 2021
|
|
---|---|---|
Article Number | L8 | |
Number of page(s) | 11 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202140330 | |
Published online | 18 March 2021 |
Letter to the Editor
First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter
1
Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
e-mail: thibault.cavalie@u-bordeaux.fr
2
LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, Meudon, France
3
Southwest Research Institute, San Antonio, TX 78228, USA
4
Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
5
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Received:
12
January
2021
Accepted:
6
February
2021
Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m s−1 around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been discovered with velocities of 1−2 km s−1. There is no such direct measurement in the stratosphere of the planet.
Aims. In this Letter, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiter’s stratosphere.
Methods. We use the Atacama Large Millimeter/submillimeter Array’s very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines.
Results. We detect, for the first time, equatorial zonal jets that reside at 1 mbar, that is, above the altitudes where Jupiter’s quasi-quadrennial oscillation occurs. Most noticeably, we find 300−400 m s−1 nonzonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counterrotation and lie several hundred kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds.
Conclusions. We directly detect, for the first time, strong winds in Jupiter’s stratosphere. They are zonal at low-to-mid latitudes and nonzonal at polar latitudes. The wind system found at polar latitudes may help increase the efficiency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
Key words: planets and satellites: individual: Jupiter / planets and satellites: atmospheres / planets and satellites: aurorae
© T. Cavalié et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.